摘要——随着高速、高精度、低功耗混合信号系统的出现,对精确、快速、节能的模数转换器 (ADC) 和数模转换器 (DAC) 的需求日益增长。不幸的是,随着 CMOS 技术的缩小,现代 ADC 在速度、功率和精度之间进行权衡。最近,已经提出了四位 ADC/DAC 的忆阻神经形态架构。可以使用机器学习算法实时训练此类转换器,以突破速度-功率-精度权衡,同时优化不同应用的转换性能。然而,将此类架构扩展到四位以上具有挑战性。本文提出了一种基于四位转换器流水线的可扩展模块化神经网络 ADC 架构,保留了其在应用重新配置、失配自校准、噪声容忍和功率优化方面的固有优势,同时以延迟为代价接近更高的分辨率和吞吐量。 SPICE 评估表明,8 位流水线 ADC 可实现 0.18 LSB INL、0.20 LSB DNL、7.6 ENOB 和 0.97 fJ/conv FOM。这项工作朝着实现大规模神经形态数据转换器迈出了重要一步。
摘要:神经形态计算已成为克服传统数字处理器冯诺依曼架构局限性的最有前途的范例之一。神经形态计算的目的是忠实地再现人脑中的计算过程,从而与其出色的能效和紧凑性相媲美。然而,要实现这一目标,必须面对一些重大挑战。由于大脑通过超低功耗的高密度神经网络处理信息,因此必须开发结合高可扩展性、低功耗操作和先进计算功能的新型设备概念。本文概述了神经形态计算中最有前途的设备概念,包括互补金属氧化物半导体 (CMOS) 和忆阻技术。首先,将讨论基于 CMOS 的浮栅存储器在人工神经网络中的物理和操作。然后,将回顾和讨论几种忆阻概念在深度神经网络和脉冲神经网络架构中的应用。最后,将讨论神经形态计算的主要技术挑战和前景。
分析从低级炸药污染到爆炸后残留物的任何物品。实验室还设有一系列小规模的热分析设备以及小规模安全测试设备。主动研究计划正在爆炸物检测,兼容性,取证,热危害,衰老和机械分解中。其他功能包括2吨的飞行员工厂加工掩体,远程建筑和广泛的湿湿设施可用于准备各种能量的材料,包括常见的烟火技术,同位素标记的爆炸物以及各种即兴爆炸物。