今天的数字计算机基于内存和计算的分离。因此,必须将数据从存储位置不断传输到传统计算体系结构中的计算位置,反之亦然,从而导致高潜伏期和能量能量。[1-3]一个为某些应用而克服这种所谓的von Neumann瓶颈的潜在概念是神经形态计算体系结构的发展,该构建体的目的是模仿人脑中的信息处理。[4-7]在生物学中,信息处理发生在庞大的神经元和突触网络中,而没有计算和记忆之间的身体分离,[8]在感觉处理,运动控制和模式识别等任务中产生了令人印象深刻的性能,[9]同一时间消耗较小的能量,比数字计算机要少的数量计算机需要进行类似的任务。[5,6,10,11]
电子器件中的忆阻器已显示出从电路元件到神经形态计算等一系列应用的潜力。这种改变电子器件中通道电导率的能力近年来使内存计算成为可能,从而吸引了人们对忆阻器的极大兴趣。光学模拟需要以半连续和非易失性的方式调制光的传输。随着光子计算的普及,人们正在使用一系列功能材料来实现这种光学模拟,即调制集成电路中的光学响应,同时保持调制状态。在这里,我们回顾了光子集成电路这一重要且新兴领域的最新进展,并概述了当前的最新技术。光学忆阻器在高带宽神经形态计算、机器学习硬件和人工智能中的应用尤其令人感兴趣,因此这些忆阻器的光学类似物允许将超快、高带宽光学通信与本地信息处理相结合的技术。
这些问题并能够用脑般的表现使序列学习是具有脑启发的学习算法的神经形态硬件。分层时间内存(HTM)是受新皮层工作原理启发的al-gorithm,能够学习和预测元素的连续序列。在先前的研究中,我们表明,在HTM模型的时间内存储算法的生物学上可用版本中,可以将备忘录的设备(一种用于节能的神经形态硬件考虑)被认为是为了节能的神经形态硬件。随后,我们对模拟信号的回忆硬件体系结构进行了模拟研究,该研究可以介绍时间学习算法。我们称之为memspikingtm的架构是基于一个磁带横梁阵列和实现神经元的控制电路和
脑机接口(BCI)可以建立大脑与外部设备之间的信息交互,从而实现对活体生物组织行为的有效控制和协调,最终实现生物智能与人工智能的完美融合。[1,2]大脑作为神经系统中最高级的部分,在多维信息处理、智能计算与决策方面具有极高的效率和极低的功耗,这主要归功于神经元之间复杂的连接。[3–7]作为大脑计算引擎的神经元通过突触紧密连接(图1 a)。在生物突触中,传递到突触前神经元的神经电刺激(动作电位)导致电压门控Ca 2 +通道的开放,导致Ca 2 +离子内流,进而诱导胞吐的发生,促进神经递质的释放到突触间隙。来自突触间隙的神经递质在突触后质膜被NMDA和AMPA受体/离子通道接收,导致离子通道的开放或关闭,最终离子内流进入突触后神经元并建立突触后电位,这表明该过程在调节突触后细胞膜电导和膜电位的快速变化中起着重要作用(图1b)。[2,7–9]在此过程中,产生动作电位时膜电位的变化可分为静息、去极化、复极化和超极化四个阶段,如图1c和表1所示。如我们所见,生物系统的实际工作电压要求约为50–120 mV(生物电压)。 [10,11] 另一方面,基于与生物神经系统高度相似的忆阻器的类脑神经形态器件研究取得了重要进展,从根本上突破了冯·诺依曼瓶颈,真正实现了存储与计算的一体化。值得注意的是,受到生物大脑高效计算、低功耗的启发,忆阻器的工作电压与生物系统所需的生物电压相匹配,可以高效地处理复杂信息并进行进一步决策,为与生命体的连接和通信奠定基础。
在人工智能(AI)和物联网(IoT)时代,包括图像,声音,气味和伤害在内的大量感官数据是从外部环境中感知的,对以数据为中心任务的处理速度和能源效率施加了关键要求。1 - 3,尽管已经做出了巨大的努力来提高von Neumann计算机的计算能力和效率,但物理分离的处理和内存单元之间的恒定数据不可避免地会消耗巨大的能量并诱导计算潜伏期。4 - 9另外,基于人工神经网络(ANN)的人脑启发的神经形态计算已经证明了其在AI和机器学习等数据密集应用中的巨大优势。必须开发ANN的硬件实施,即人工突触和神经元,以模仿生物突触和神经元的生理活性。近年来,已经提出了各种神经形态设备,10 - 13,由于其简单的结构,高积分密度,高运行速度,低能量消耗和模拟行为,两个末端的内置构件被认为是最有希望的候选者。1,2,7,8,14 - 17尤其是,最近具有挥发性阈值转换(TS)行为的新型扩散的回忆录已证明它们在泄漏的整合和火灾(LIF)神经元中的潜力,5,7,18,19,19
摘要 - 纳米级候选人的出现提出了能够构建CMOL(CMOS/纳米线/分子)类型的超密集内存内计算电路架构的希望。在CMOL中,将在纳米线的交点上制造纳米级备忘录。CMOL概念可以通过在CMO上制造较低密度的神经元并与纳米线和纳米级 - 墨西哥纤维织物放置在顶部的纳米线和纳米级 - 梅斯托织物,从而在神经形态硬件中利用CMOL概念。但是,技术问题阻碍了目前可靠的可靠商业单片CMOS-MEMRISTOR技术的这种开发。一方面,每个备忘录都需要串联的MOS选择器晶体管,以确保大型阵列的形式和编程操作。这会导致复合Mos-Memristor突触(称为1T1R),这些突触不再是纳米线穿越时的突触。另一方面,回忆录尚未构成高度可靠,稳定的模拟记忆,用于逐步学习的大规模模拟重量突触。在这里,我们演示了一种伪 - 旋转整体芯片核心,该芯片绕过上面提到的两个技术问题:(a)利用一种类似CMOL的几何芯片布局技术来提高1T1R的限制,以及(b)利用二进制重量跨度的依赖性依赖性(s sTD),该规则(b)更大的二进制重量跨度的依赖性(b)使用的备忘录。实验结果是针对具有64个输入神经元,64个输出神经元和4096 1T1R突触的尖峰神经网络(SNN)CMOL核心提供的,该突触在顶部为200nm大小的TI/HFOX/TIN MEMRISTOR的130nm CMO制造。cmol-core使用查询驱动的事件读取,这允许内存可变性不敏感的计算。实验系统级别的演示是针对普通模板匹配任务的,以及正则化的随机二进制STDP特征提取学习,可在硬件中获得完美的识别,以进行4个字母的识别实验。
脉冲神经网络 (SNN) 的设计灵感来源于人类大脑,它是使用集成系统中的传统或新兴电子设备在硬件上实现高效、低成本和鲁棒的神经形态计算的最强大平台之一。在硬件实现中,人工脉冲神经元的构建是构建整个系统的基础。然而,随着摩尔定律的放缓,传统的互补金属氧化物半导体 (CMOS) 技术逐渐衰落,无法满足日益增长的神经形态计算需求。此外,由于 CMOS 器件的生物可行性有限,现有的人工神经元电路非常复杂。具有易失性阈值开关 (TS) 行为和丰富动态的忆阻器是超越 CMOS 技术模拟生物脉冲神经元并构建高效神经形态系统的有希望的候选者。本文回顾了有关 SNN 基础知识的最新进展。此外,我们回顾了基于 TS 忆阻器的神经元及其系统的实现,并指出了系统演示中从器件到电路需要进一步考虑的挑战。我们希望这篇综述可以为未来基于忆阻器的神经形态计算的发展提供线索和帮助。
周期、地缘政治和战争,以及冲突和恶劣天气条件造成的持续粮食不安全威胁。2022 年,一系列内部和外部冲击扰乱了非洲的经济复苏——包括恶劣的天气条件、快速上升的通货膨胀率、更高的借贷成本以及主要出口市场的需求疲软。其中一些因素将抑制未来一年的增长前景,但预计该地区总体将保持稳定,而不是遭遇经济增长的大幅下滑——预计 2023 年北非和撒哈拉以南非洲都将增长 3.2%。我们预计几乎所有非洲国家都将继续增长,尽管整个地区实际 GDP 增长率将有很大差异,一些国家将停滞不前并濒临衰退。
新兴的非易失性存储设备,即忆阻器,在神经形态硬件设计中展现出了非凡的前景,特别是在脉冲神经网络 (SNN) 硬件实现中。基于忆阻器的 SNN 已经应用于解决传统人工神经网络 (ANN) 解决的任务(例如图像分类和模式识别),并且不同学科仍在进行更多尝试以挖掘这一新研究课题的潜力。要将忆阻器应用于神经形态应用(本文中严格定义为使用 SNN 的应用),可以遵循两种途径。一种方法是首先利用硬件基础设施来表征和控制忆阻器设备,然后将其映射到应用程序的更高级函数(例如矩阵乘法)。另一种方法是将数据驱动的忆阻器模型嵌入软件模拟器中,以使用从真实设备中提取的参数来模拟应用程序。
随脉冲数增加而呈现增加趋势,并表现出显著的光感应行为,随着光功率从0 mW增加到8 mW而稳步增强。这种依赖于功率的电导控制表明了对突触权重的光学可调性,预示着未来视觉神经应用的潜力。图4i展示了通过调制光功率对开关时间(施加单脉冲时设备电流稳定的时间)的有效控制。对于读取电压为1 V、幅度为5 V、脉冲宽度和间隔均为3 s的脉冲,在532 nm激发下,开关时间从约1.8 s减少到0.6 s。这暗示了光调制忆阻器在神经形态应用上的高级灵敏度。