AE 气雾剂 AI 活性成分 AB 谷物诱饵 B 诱饵 BB 块状诱饵 CS 胶囊悬浮液 D 粉剂 DC 可分散浓缩液 DF 干性可流动颗粒 DG 可分散颗粒 DP 可撒粉粉 DS 干性种子处理用粉末 EC 乳化浓缩液 EO 乳液,油包水 ES 种子处理用乳液 EW 乳液,水包油 FS 种子处理用可流动浓缩液 GR 颗粒 Ga 气体 GB 颗粒诱饵 GS 加压气体 L 液体 LS 种子处理用液体 ME 微乳液 MG 微颗粒 OD 油分散液 ODC 油分散液浓缩液 OEC 油性乳剂浓缩液 P 粉末 Pa 糊状物 PB 片状诱饵 RB 即用型诱饵 SB 水溶性袋装 SC 悬浮浓缩液 SG 水溶性颗粒 SL 水溶性液体 SP 水溶性粉末 SS SP 用于种子处理 Tb 片剂 Tc 技术级材料 UL 超低容量液体 ULV 超低容量 WB 蜡块 WG 水分散性颗粒 WP 可湿性粉剂 WS 用于泥浆处理的 WP
个人护理和制药行业使用乳液科学及其副产品广泛地制作乳霜和乳液,包括水和油溶成分。虽然预测冷却和加热仅占用于制造乳液系统的能源总支出的90%以上,但目前用于处理此类乳液的方法需要大量的时间和能量。乳液技术的冷过程将变得更加可取,而消费者已经开始对可持续和环境友好的产品和程序表现出兴趣。一种先进的冷乳化方法,用于制造一种局部剂量剂型,以纳米乳液的形式为先进的药物输送系统开发了一种,以克服热质药物的制造挑战,并在与常规局部剂量相比时具有可持续性且具有可持续性和环保性的成本效益。纳米乳液的产生将导致一种具有热力学稳定的配方,并结合了两个不混溶的液体,以在存在适当的稳定剂的情况下创建稳定的同质组合。纳米乳液的稳定性和液滴大小使其与常规乳液不同。较小的液滴尺寸可以通过皮肤表皮增加其稳定性和穿透。在这篇综述中,重点是提供对冷乳化的基本理解,作为纳米乳液的制剂技术,其表征,应用,各种专利以及涉及纳米乳液的临床试验。这些信息可以作为进一步开发和改进涉及纳米乳液的技术和技术的基础。
目标是开发乙酸聚氯乙烯(PVAC)和乙烯乙烯酯(VAE)的杂化IPN网络。在这项研究工作中,有效合成了乙酸乙酸乙烯酯(VAC)/ VAE杂化乳液和乙酸聚乙烯酯(PVAC)。通过调整乙酸乙烯酸盐单体和VAE成分之间的重量比,已经开发出具有多种特征的乳液。使用铅笔硬度,拉伸剪切强度,pH,接触角度测量,差异扫描量升压(DSC)和粘度的测试研究了对膜机械,热和物理正常的影响。添加5.0重量百分比VAE时,在24小时粘合期后,在干燥条件下的拉伸剪切强度降低了18.75%,在湿条件下,耐热性降低了26.29%(按照瓦特91)降低26.29%,而拉伸剪切强度则降低了约36.52%(每204)。还通过接触角度测试证实了原始样本的结果。杂交PVAC乳液中的互穿网络(IPN)形成,因为初级键不会直接附着于PVAC和VAE链上。VAE的添加降低了机械性能(在干燥条件下)和耐热性。接触角分析表明,与常规PVA稳定的PVAC均基均基型粘合剂相比,含有VAE的PVAC粘合剂的水再持续增加。与Virgin PVAC HOMO相比,通过添加VAE,可以增强PVAC乳液聚合的水分。
数据,将乳剂探测器置于 2018 年 ATLAS IP 相对于 FASER 站点的另一侧。 [ Phys. Rev. D 104, L091101 (2021) ]
2. 碎肉或重组肉制品。 - (1) 本条款中规定的标准适用于已用任何合适包装材料包装的生或熟碎肉或重组肉制品。此类别描述了碎肉或重组肉制品(包括机械去骨或分离的肉制品)的几个加工步骤(例如,研磨、切割、切块、切片、压片、切块、切碎、剁碎)、配料、机械和烹饪方法。它大致分为碎肉或乳化肉制品和重组肉制品。 (2) 碎肉制品是指通过切割、研磨、切块、剁碎、碾磨或腌制,或两者兼有,并加入或不加入添加剂,使颗粒尺寸减小的无骨肉。此类别还包括肉乳化物或面糊,它们是含有真溶液、凝胶、乳化脂肪和空气的细碎肉制品。乳化物定义为
乳化剂工厂的融资 2012 年 6 月,在投票决定成立合资企业后,CED7 批准了“向 CED7 县能源区管理局提供资金支持的意向决议”。六个月后,该管理局获得了 2,000,000 美元的商业贷款,该贷款于 2013 年 10 月增加至 2,350,000 美元。合资协议表明,在附录“A”中所示的初始所有权投资之后,所有额外资本投入将平等进行。CED7 的 400,000 美元初始资本投入是承诺提供 400,000 美元的存款单作为管理局 2,350,000 美元贷款的抵押品。管理局的初始贡献是附件“A”中所示的“产品”,即 2012 年 10 月以 575,000 美元购买的沥青乳液专利。12 贷款还款包括 2013 年 7 月至 2019 年 12 月之间的多次付款。CED7 提供了 67% 的贷款,管理局支付了 33% 的贷款,总成本为 2,677,902.55 美元。
我们介绍了中等稳定稀释乳液的研究。这些乳液是在许多水处理情况下遇到的石油污染的水模型。水的纯化和消除石油依赖于乳液稳定性。尽管进行了积极研究,但乳液稳定性的话题仍然远非完全理解。特别是尚不清楚实验方法是否访问不同长度尺度的实验方法是否导致相同的结论。在本文介绍的研究中,我们使用了不同的方法来表征诸如离心和简单瓶子测试之类的乳液,以及对在油水界面上单宏观油滴碰撞的研究。我们研究了含有添加的聚合物或表面活性剂的不同乳液。在添加聚合物的情况下,当聚合物浓度变化时,离心和单滴实验导致稳定性相反。在添加的表面活性剂的情况下,离心和单滴实验均显示出升高表面活性剂浓度时的最大稳定性,而瓶装测试则显示稳定性单调增加。我们提出了针对这些意外观察的暂定解释。明显的矛盾是由于不同方法需要不同的跌落大小和/或不同的滴度浓度。在使用某些方法观察到的较高表面活性剂浓度下乳液稳定性的令人困惑的降低仍然不清楚。这项合并研究说明了当使用不同的实验方法时可以获得不同的结果。因此,建议不要依靠一种方法,尤其是在稳定性有限的情况下出于论文中解释的原因。
生物表面活性剂是表面活性剂,面临活性乳液,可降低两种液体之间或液体之间的界面压力。表面活性剂是有机乳液,既包含疏水(表面活性剂的头部)和亲水性(表面活性剂的尾部)的一半。因此,表面活性剂含有两种水不足,即驱虫群和可响应的水组,即热爱水组。生物表面活性剂也会像化学表面活性剂一样面临活跃的乳液,但与化学表面活性剂不同,生物表面活性剂是由细菌,真菌和激励剂等微生物合成的。生物表面活性剂是属于包括糖脂,脂肪肽,脂肪肽,脂肪酸盐的各种类别的有机化合物,磷酸化,磷酸化,磷酸化,磷酸化。生物表面活性剂包括掉落面部压力的包裹,稳定混合物,促进愤怒,通常是无毒的,可生物降解的。BIO乳化剂是两亲构的聚合物,而生物性聚合物面临的活性化学物质,而活性化学物质是由大量细菌,激发和fungi产生的。