分子表面活性剂一般为两亲性分子,由亲水基团和疏水基团组成,这些两亲性分子倾向于在水/油界面处进行吸附,亲水基团浸没在水中,疏水基团浸没在油中,可以有效降低界面张力(Ren等,2019;Rosen和Kunjappu,2012)。但分子表面活性剂在界面处的锚定处于吸附-解吸的热平衡状态,因为分子表面活性剂可以在热运动的驱动下从界面处解吸,乳液会缓慢聚结(Borwankar和Wasan,1988)。此外,由于Ostwald熟化,内部压力大的小液滴会变小,而内部压力小的大液滴会变大(Voorhees,1985)。在液滴聚结和Ostwald熟化作用的影响下,乳状液的平均尺寸会随着时间的推移而缓慢增加,从而降低其总界面能,最终导致相分离(Chesters,1991;Evans & Needham,1987),此时体系的总界面面积最小,总界面能最低。另一方面,固体颗粒,也称为胶体表面活性剂,能够长期稳定两个不混溶相的乳状液(Ramsden,1903)。由胶体表面活性剂稳定的稳定乳状液称为Pickering乳状液(Pickering,1907)。与传统分子表面活性剂稳定的乳液相比,胶体表面活性剂稳定的 Pickering 乳液具有许多独特的性质:(i)胶体表面活性剂从水/油界面的解吸能比热能高几个数量级,导致胶体表面活性剂在界面处发生不可逆吸附,从而具有优异的乳液稳定性( Aveyard,Binks,& Clint,2003 ;Binks,2002 ;Pieranski,1 980);(ii)胶体表面活性剂可以由生物相容性材料制成,表现出良好的生物相容性( Yang,Fu,Wei,Liang,& Binks,2015); (三)胶体表面活性剂可以设计用于实现具有多种功能的Pickering乳液,例如pH,温度或光触发响应(Tang,Quinlan和Tam,2015;Wei,Yu,Rui和Wang,2012;Hao等,2018)。Pickering乳液可以为多学科研究提供独特的平台,并将在科学研究和工业应用中发挥越来越重要的作用。这里我们对Pickering乳液系统进行了全面的回顾。主要涵盖三个方面:(i)粒子特性(包括粒子两亲性、浓度、大小和形状)对 Pickering 乳液的影响;(ii)两亲性聚合物的制备
水-能源可持续性将取决于先进压力驱动分离膜的快速发展。尽管节能,但水处理膜受到普遍存在的污垢的限制,这可以通过设计自清洁膜界面来缓解。在本研究中,设计了一种金属-多酚网络来引导催化纳米膜(约18 纳米)在惰性聚合物膜上的装甲化。螯合导向的矿化涂层表现出高极性、超亲水性和对原油的超低粘附性,可实现可循环的原油-水乳液分离。现场通量恢复率超过 99.9%,减轻了传统外部清洗的需要。与对照膜和简单液压清洗相比,螯合导向纳米装甲膜的就地自清洁再生性能分别提高了 48 倍和 6.8 倍。通过密度泛函理论计算确定了前体相互作用机制。螯合导向装甲化为催化、生物医学、环境修复等领域的可持续应用提供了希望。
工业或个人用途会增加环境污染(例如水污染或二氧化碳产生)并且还会导致不利的健康影响(例如刺激、过敏反应或溶血问题)。 [6] 因此,必须找到一种环保且可持续的替代方案。Pickering 乳液以首次报道它们的科学家的名字命名,其特点是存在提供稳定性的界面活性粒子。 [7] 在油包水或水包油乳液的情况下,这些 Pickering 稳定剂会吸附在油/水界面上并发挥作用。 [8] 特别是,与传统的表面活性剂稳定体系不同,高胶体稳定性不是来自表面张力的降低,而是来自界面上物理屏障的形成。 [9] 纳米粒子的不可逆锚定可以通过考虑从两种不混溶液体界面解吸所需的高能量来解释。 [10] 因此,产生了强大的空间屏障,乳液具有很强的抗聚结、抗变形和抗奥斯特瓦尔德熟化能力,可以长时间有效地保护液滴。 [6]
大多数生物表面活性剂产生的微生物都是碳氢化合物降解剂。进行了研究,以分离和表征尼日利亚原油污染土壤中产生生物表面活性剂的细菌。从原油污染的土壤中分离出产生生物表面活性剂的细菌。原油污染的土壤,并进行了理化分析。细菌,并筛选出生物表面活性剂的产生。使用形态学,生化和分子方法鉴定出表现出产生生物表面活性剂能力的生物体。土壤的理化参数显示为pH 6.9,电导率为71.5,2.55%碳,2.016%的氮和5.98%的磷。生物表面活性剂测试的值表明生物表面活性剂的生产阳性。两个选定生物S2和S13的乳液指数的百分比分别为59.09%和57.14%。来自分子鉴定的爆炸分析表明,S2和tsukamurella inochensis的孤立生物是S13的S2和Tsukamurella inochensis的Gordonia Alkanivorans。这项研究表明,在原油污染的土壤中,孤立的生物表面活性剂产生的细菌很丰富。
这项研究的重点是绿色材料的吸附特性及其对减少废水中溶解的固体的影响。总溶解固体(TDS)是确定水质质量的关键参数之一。选择用于此实验分析的材料包括辣木oleifera的种子,ficus ficus indica,ficus eligiosa和Annona Squamosa的叶子。已经确定了在700 mg/l至3000 mg/l的废水中对四个生物量的性能进行的批判性综述。使用绿色材料实现了近40%的TDS减少。Annona Squamosa在高TDS样品中在低TDS样品和ficus eligiosa中有效。在此处详细介绍了生物质提取物及其凝血/絮凝(C/F)特性在从粘合剂和乳液制造业获得的工业废水处理中的处理中。绿色材料的特征是傅立叶变换红外光谱(FTIR),具有能量分散X射线分光光度计(SEM-EDAX)和ZETA电位值的扫描电子显微镜。©2025 SPC(SAMI Publishing Company),《亚洲绿色化学杂志》,用于非商业目的。
近年来,生产饲料用保护性脂肪补充剂的方法得到了很大的发展。作为防止不饱和脂肪氧化的一种方法,食品工业研究人员使用包封来减少不愉快的气味和味道,并作为保护不饱和脂肪的有效方法。包封过程涉及将目标物质覆盖或捕获在另一种物质或系统中。同样,食品中的维生素和微量营养素化合物不会长时间保持稳定,并且容易分解,这取决于化学结构、食品基质特性、处理参数和储存条件。因此,包封可以防止这些化合物被破坏,直到它们被转移到正确的位置或减缓分解过程(如氧化或水解)。这一概念可以扩展到脂质(油和脂肪)。目前,乳液喷雾干燥是精细油微涂层的最常见方法。最近发现,与喷雾干燥相比,团聚形成方法可以产生更稳定的微涂层,油含量更高。可生物降解的聚合物作为包封材料引起了广泛关注。微囊化脂质可以提高反刍动物的肉和奶的品质。
Milk-to-Drop 晒后身体喷雾含有 98% 的天然成分,让您的肌肤感到清爽舒缓,是晒伤皮肤的理想选择。使用这种可喷雾的乳液,它会在涂抹过程中转变成水滴,为您带来独特的体验。这种温和、轻盈的稀薄乳液通过极低的助乳化剂使用量来稳定,温和度极佳,与 PemuPur™* START 聚合物相结合,这种天然衍生的聚合物乳化剂可提供轻盈的感觉和快速破霜效果。AlgaPūr™* HSHO 藻油是一种生物技术油,由微藻的神奇力量制成,可将糖转化为 100% 天然的甘油三酯,这是一种可持续的发酵过程,对环境的影响非常小。AlgaPūr™* HSHO 藻油可提供保湿,使用后感觉柔软丝滑。 Schercemol™* CO 酯和 Schercemol™* 1818 酯均为天然轻质和中质酯,可增强肌肤的轻盈感和奢华柔软度。通过可持续 Phenobio™* 亚临界水技术获得的植物成分 Actismart™* SW 黄瓜和 Actismart™* SW 洋甘菊,可能有助于以自然的方式缓解皮肤状况。
目的:本研究旨在设计和评估基于微海绵的盐酸异丙嗪给药系统。微海绵给药系统设计用于药物的位点特异性和控制释放,通过使用邻苯二甲酸醋酸纤维素来改善药物的位点特异性吸收。材料和方法:微海绵采用改进的准乳液溶剂扩散技术配制而成。通过 FTIR 研究了盐酸异丙嗪、邻苯二甲酸醋酸纤维素、乙基纤维素和聚乙烯吡咯烷酮之间的化学相互作用,FTIR 结果证实药物和聚合物之间没有化学反应。药物和聚合物的相容性研究通过 DSC 得到证实。结果:FTIR 结果证实药物和聚合物之间没有化学反应。体外药物释放率在 91.97% 至 98.78% 之间,配方 MS5 显示出最高的 % CDR。优化后的配方 (MS5) 表现出良好的包封率 (93.6%)、浮力 (78%) 和累积药物释放率 (98.78%)。SEM 显示异丙舒林盐酸盐以控释模式从球形多孔微海绵中释放。结论:本研究提供了一种新方法来配制和评估异丙舒林盐酸盐微海绵以治疗妊娠期间早产。
摘要 - 这项研究列出了通过乳液形成方法预处的壳聚糖微观结构中的长矛油(SMO)的封装。SMO虽然具有药物意义,但由于其在条件下的稳定性较小和高波动性,但在医疗和功能纺织品中发现了lim的应用。尽管如此,它在壳聚糖中的封装可能会增强其在上述目的的稳定性和适用性。使用不同的分析技术表征了SMO封装的壳聚糖微观结构,并通过柠檬酸的绿色交联应用棉织物。经过处理的织物揭示了通过SEM和FTIR分析证实的微胶囊的成功粘附在其表面上。那里观察到处理的织物的拉伸强度略有下降;然而,通过减少其99%的人口,改善了折痕恢复行为和良好的抗菌活性,以应对广谱细菌菌株;而这种织物的刚度在某种程度上表现出趋势。因此,在此产生的增值多功能纺织品可以为潜在的医疗和医疗保健应用提供表面和抗菌活性,而不会损害其舒适性。
FSTC 311 食品加工原理 学分 3。2 个讲座小时。3 个实验室小时。罐装、冷冻、脱水、腌制和特色食品制造的原理和实践;各种制备、加工、包装和使用添加剂技术的基本概念;参观加工厂。先决条件:FSTC 201;大三或大四分类或系主任或讲师批准。FSTC 312 食品化学 学分 3。3 个讲座小时。主要食品成分(水、碳水化合物、脂质、蛋白质、植物化学营养品)的基本和相关化学和功能以及食品乳化系统、酸、酶、凝胶、颜色、味道和毒素的研究。先决条件:FSTC 201;CHEM 227;CHEM 237 或系主任或讲师批准。FSTC 313 食品化学实验室 学分 1。3 个实验室小时。实验室练习从基础化学而不是分析角度研究特定分子,如食品酸、酶、色素和风味,以及食品中的化学相互作用,如氧化反应、乳化系统和功能特性。先决条件:FSTC 201;CHEM 227;CHEM 237 或经系主任或讲师批准。FSTC 314 食品分析 学分 3。1 个讲座小时。4 个实验室小时。用于测定食品成分的选定标准方法;用于食品分析的经典和仪器技术的原理和方法。先决条件:FSTC 201;FSTC 311;CHEM 227;CHEM 237 或经系主任或讲师批准。FSTC 315/AGSM 315 食品加工工程技术 学分 3。2 个讲座小时。2 个实验室小时。基础力学、食品和加工材料的物理和热性质、传热、质量和能量平衡、湿度测定法(空气性质)、绝缘。先决条件:PHYS 201 或 PHYS 206 成绩为 C 或更高,或经讲师批准。交叉列表:AGSM 315/FSTC 315。FSTC 316 替代蛋白质生产的发酵技术学分 3。3 个讲座小时。探索发酵科学、细胞农业、替代蛋白质和生物加工、微生物群落和食品安全的实验室技术。先决条件:大三或大四分类。FSTC 319 微生物检测和表征的分子方法学分 3。2 个讲座小时。2 个实验室小时。探索在发酵和酿造等行业中识别和表征微生物群落至关重要的分子方法。先决条件:BIOL 111、BIOL 112 或 BIOL 206;大三或大四分类。
