。cc-by-nc-nd 4.0国际许可证(未经同行评审证明)获得的是作者/资助者,他授予Biorxiv授予Biorxiv的许可,以永久显示预印本。这是该版本的版权持有人,该版本发布于2023年12月24日。 https://doi.org/10.1101/2023.12.23.573214 doi:Biorxiv Preprint
保留所有权利。未经许可就不允许重复使用。(未经同行评审证明)是作者/资助者,他已授予Medrxiv的许可证,以永久显示预印本。
群集定期间隔短的短文重复序列(CRISPR)/ CRISPR相关蛋白9(CAS9)系统已成为过去十年来许多动植物和动物物种中靶向基因组编辑的最重要工具。CRISPR/CAS9技术还引发了关键谷物作物中基因组编辑的应用和技术进步的范围,包括大米,小麦,玉米和大麦。在这里,我们回顾了CRISPR/ CAS9的先进用途以及在谷物作物的基因组编辑中的衍生系统,以增强各种农艺重要特征。我们还重点介绍了提供的新技术进步,用于提供预组装的cas9-grna核糖核蛋白(RNP)编辑系统,多重编辑,功能获得的策略,使用人工智能(AI)工具(AI)工具以及将CRISCR与新型快速繁殖(SB)结合在一起(SB)和Vernalsization and Nalnalization and Nalnalization Caltergies。
抽象的shot弹枪元基因组测序有可能提供细菌应变水平的分辨率,这对于解决许多临床问题至关重要。尽管可以使用实现应变水平的生物信息学工具,但需要进行彻底的基准测试,以验证其用于较少研究和低生物质微生物组(如上呼吸道中的生物量微生物)的使用。我们分析了先前发表的数据集,这些数据集是从孟加拉国婴儿(微生物群和健康研究)和来自瑞士囊性纤维化儿童的口咽样品的新型数据集的纵向收集的鼻咽样样品。来自细菌培养物的数据用于对菌株3的参数进行基准测试,这是一种用于应变水平分辨率的生物信息学工具。此外,将菌株3的结果与从Strainge和新得出的全基因组测序数据中得出的Metage Notic组件进行了比较。优化分析参数后,我们比较了菌株3的结果与培养金标准方法,并实现了87%(链球菌肺炎链球菌),80%(莫拉氏菌Cartarrhalis),75%,75%(嗜血杆菌)和57%(57%)(57%的葡萄球菌AUREUSNASNASEFRENN),HERISN NASEFREN NASEFREN NASEFREN N.NASEFREN N.NASEFREN N. )和46%(金黄色葡萄球菌),用于260个口咽样品。比较50 s的核心基因组的系统发育树。金黄色葡萄球菌分离株,由菌株3产生的相应标记基因树发现,除三个样品外,所有除三个样品外,都有相似的相似性,表明有足够的应变分辨率。总而言之,菌株3的结果与细菌培养物的数据进行比较表明,尽管仔细优化参数以适合低生物量微生物组时,宿主DNA的含量较高,但呼吸微生物组的应变水平跟踪是可行的。
摘要我们介绍了Nelisa,这是一个微型,高通量和高保真蛋白质分析平台。DNA寡核苷酸用于在光谱编码的微粒上预启动抗体对,并执行位移介导的检测,同时确保在非同源抗体对之间的空间分离。使用流式细胞术在高通量上进行成本效益,并在高通量上进行。我们组装了一个由191个目标组成的炎症面板,这些炎症面板多重地多路复用,而没有交叉反应性或对性能与1 plex信号的影响,其灵敏度低至0.1pg/ml,并且在平台上的测量值跨越8个幅度。然后,我们进行了一个大规模的PBMC分泌组筛选,具有细胞因子为肌扰动物和读出,测量了7,392个样品,一周不到一周的时间生成约1.5m蛋白质数据标记,与其他高度多重的免疫仪相比,吞吐量的显着进展。我们发现了447个显着的细胞因子反应,包括多个推测的细胞因子反应,这些反应在供体中保守和刺激条件。我们还验证了其在表型筛查中的用途,并提出了Nelisa在药物发现中的应用。
特征向量2,导致1x128显着矢量。由于RNN-FC网络中权重的随机初始化,因此不能保证对同一组折叠功能进行训练的模型会收敛到一组最终权重。因此,我们重新训练了20次交叉验证的模型的集合,并类似地重新计算了每个样品的显着矢量。最终显着图是通过平均所有重复样本的归因图并在0到1之间的标准化来计算的。我们使用除一个(通道112)以外的所有通道的HG特征重复了此过程
摘要 材料从液态到固态的快速光化学转化(即固化)使得制造用于微电子、牙科和医学的现代塑料成为可能。然而,工业化的光固化材料仍然局限于由高能紫外光驱动的单分子键均裂反应(I 型光引发)。这种狭窄的机制范围既对高分辨率物体的生产提出了挑战,也限制了可使用新兴制造技术(例如 3D 打印)生产的材料。在此,我们开发了一种基于三重态-三重态湮没上转换 (TTA-UC) 的光系统,该系统可在低功率密度(<10 mW/cm 2 )和环境氧气存在下使用绿光有效驱动 I 型光固化过程。该系统还表现出其固化深度对曝光强度的超线性依赖性,从而提高了空间分辨率。这使得 TTA-UC 首次集成到廉价、快速、高分辨率的制造工艺——数字光处理 (DLP) 3D 打印中。此外,相对于传统的 I 型和 II 型(光氧化还原)策略,目前的 TTA-UC 光引发方法可改善固化深度限制和树脂储存稳定性。本报告提供了一种用户友好的途径,可在环境光化学过程中利用 TTA-UC,并为制造具有更高几何精度和功能的下一代塑料铺平了道路。
图 1:CRISPR 死亡筛选设置。在死亡细胞群中确定 sgRNA 丰度,从而可以识别在泛 PI3K 抑制剂 GDC-0941 存在下诱导细胞死亡的 sgRNA,并可以识别适合联合治疗的靶标。
通信地址:justin.eyquem@ucsf.edu 和 aravind.asokan@duke.edu。 *这些作者的贡献相同 作者贡献 JA、AA、WAN 和 JE 概念化了研究并规划和设计了实验。WAN 和 JA 执行实验、指导研究助理并领导所有实验的后勤和技术方面。JA 领导定向进化和后续数据分析。WAN 领导敲除筛选和敲入策略的设计。An.T. 和 SC 负责实验设计、体外测定数据收集和病毒生产。GR 负责实验设计和体内测定数据收集,An.TAR、JJM 和 JY.C. 负责体外测定数据收集和病毒生产。Al.T、CC 和 VA 负责体外测定数据收集。WHX 负责体外测定数据收集和数据分析。ZS 负责敲除筛选的 NGS 文库设计和测序。LPH 负责实验设计。 HP 与 SK 一起分析了全基因组筛选生成的数据,最后,WAN、JA、AA 和 JE 在 JJM 和合著者的帮助下撰写了手稿。