未来战略性 X 射线天文学任务(如 AXIS [ 1 ])建议将大收集面积反射镜与大型、快速、宽视场成像仪相结合。高帧速率对于最大限度地减少点源的堆积影响以及减轻粒子背景对微弱弥散气体研究的影响至关重要。同时,还必须保持低噪音和出色的软 X 射线能量响应以满足关键的科学目标。除了所需的帧速率外,最先进的 CCD 几乎能够提供此类任务的所有关键性能指标。大型探测器的快速帧速率可带来非常高的有效像素速率。我们斯坦福大学的团队正在与麻省理工学院 (MIT) 和麻省理工学院林肯实验室 (MIT-LL) 合作,通过多管齐下的方法解决这一技术差距。为了实现更高的帧速率,我们正在努力提高单个输出的读出速度和每个 CCD 可以并行运行的输出数量。图 1 显示了适用于 AXIS 焦平面的可能 CCD 模块概念。单个输出的速度提高源于 CCD 输出级优化、通过使用专用 ASIC 减少寄生输出负载以及对视频波形使用数字信号处理。读出 ASIC 还允许我们以较小的占用空间和适中的功耗并行操作多个输出。我们还在研究 MIT-LL 制造的一种新型探测器技术,即单电子灵敏读出(以下简称 SiSeRO),虽然它还不能达到单电子噪声性能,但为实现极低噪声、高速 X 射线探测器提供了一条有希望的途径。
启用活动摘要:国家生物多样性战略和行动计划(NBSAP)的实施在全球范围内已经变化,有些国家取得了重大进展,而另一些国家则落后。全球生物多样性前景5(GBO-5)报告于2020年发表,该报告强调,尽管各国在设定目标和制定政策方面取得了重要进展,但NBSAPS中包含的许多国家目标与生物差异2011 - 2020年生物生物生物生物生物生物生物的战略计划的范围或野心水平不符。NBSAP的实际实施缓慢且不足以解决持续的生物多样性损失。进一步的信息从当事方为公约准备的国家报告中揭示了进度的例子,如果扩大规模,可以支持实现2050年与自然和谐相处的2050年愿景所必需的变革性变化。
简介:体外细胞系模型为研究可用于癌症全身化疗的化合物提供了宝贵的资源。然而,由于数据分散在几个不同的数据库中,这些资源的利用受到限制。在这里,我们的目标是建立一个平台,能够验证化学耐药性相关基因并对可用的细胞系模型进行排序。方法:我们处理了四个独立的数据库,DepMap、GDSC1、GDSC2 和 CTRP。对基因表达数据进行分位数归一化,并分配 HUGO 基因名称以明确识别基因。导出所有药物的耐药性值。使用 ROC 检验计算基因表达与治疗耐药性之间的相关性。结果:我们将四个数据集与 1562 种药物的化学敏感性数据和 1250 种癌细胞系的转录组水平基因表达相结合。我们已利用该数据库建立了一个在线工具,以便在统一的分析流程中关联可用的细胞系敏感性数据和治疗反应 ( www.roc- plot.com/cells )。我们利用已建立的流程对与阿法替尼和拉帕替尼(两种 ERBB2 酪氨酸激酶结构域抑制剂)耐药性相关的基因进行排序。讨论:该计算工具可用于 1) 将基因表达与耐药性关联起来,2) 识别和排序耐药和敏感细胞系,以及 3) 排序耐药相关基因、癌症标志和基因本体途径。该平台将通过验证基因-耐药性相关性和为新实验选择最佳细胞系模型,为加速癌症研究提供宝贵支持。2022 作者。由 Elsevier BV 代表计算和结构生物技术研究网络出版。这是一篇根据 CC BY 许可 ( http://creativecommons. org/licenses/by/4.0/ ) 开放获取的文章。
关于人工智能 (AI) 在可持续农业中的作用的文献计量分析非常缺乏,因此本研究试图填补这一研究空白,并提供 2000-2021 年期间在该研究领域进行的研究证据。该研究是对 2000-2021 年期间 465 篇先前关于人工智能在可持续农业方法中的应用的文章和评论的系统书目分析。使用 VOSviewer 和 Biblioshiny 可视化软件对研究结果进行了可视化和呈现。分析后获得的结果表明,在人工智能在实现可持续农业方面的作用领域发表的学术著作数量自 2018 年以来显着增加。因此,有确凿的证据表明增长轨迹显示出显着的上升趋势。从地理上分析,国家合作网络显示,本研究领域的大多数研究来自中国、美国、印度、伊朗、法国。合著者网络分析结果表明,美国、中国、英国和德国的知名作者之间存在多学科合作和互动。这项文献计量研究提供的最终框架将帮助未来的研究人员确定人工智能和可持续农业研究的关键兴趣领域,并缩小发表杰出学术著作的国家范围,以探索合作机会。
反应成分并防止流动管的降水,堵塞或结垢。7溶剂的教条使用 - 并且通常是不希望的有毒溶剂(例如DCM和DMF),已经建立了一种现状,其中合成化学家是合成的事实,其分子输入的大部分是对反应瓶(溶剂)的大部分输入(溶剂),最终是直接或间接地 - 直接或间接地 - 对原子质造成的含量。8可持续性指标的重要性越来越重要,例如原子经济,电子因素,过程质量强度以及工业路线设计和开发中的时空产量,9使研究人员能够详细研究“所需的输出”/““废物”二分法,因为在散装溶解中的使用在这些后两者中都具有重要的作用。因此,从反应培养基中完全消除它们的机会 - 从可持续化学的角度来看,将它们完全从反应培养基中删除的机会是非常相关的。10
并表征重组 MAD7 以用于我们 iPSC 基因编辑平台中的核糖核蛋白 (RNP)。我们的工艺产生的蛋白质在配制后在溶液中是均质和单体的。此外,通过生物物理和功能表征测量,蛋白质稳定性在 -8080 C 下保持 6 个月。重组产生的 MAD7 的活性在 iPSC 中多个基因座的敲除 (KO) 和同源定向修复 (HDR) 效率方面与 Cpf1 相当。我们已经生成并测试了针对基因组中不同位点的多个 gRNA,并证明 MAD7 不会引起任何结构异常,这通过正交遗传表征测定确定。数据表明,重组 MAD7 CRISPR 核酸酶可以有效表达、纯化和配制,从而能够将哺乳动物细胞稳健而精确地改造为核糖核蛋白 (RNP)。我们目前正在使用我们的 MAD7 优化工艺来生成 MAD7 RNP,以便对具有多个基因编辑的治疗性 iPSC 衍生的 NK 和 T 细胞候选产品进行基因工程改造。Hunter Hoffman、Jill M. Carton、Buddha Gurung、Justin Bianchini、Shelby Keating、Michael F. Naso、Luis Borges
摘要 量子计算机面临的一个主要挑战是可扩展的量子门同时执行。在囚禁离子量子计算机中解决这一问题的一种方法是基于静态磁场梯度和全局微波场实现量子门。在本文中,我们介绍了表面离子阱的制造方法,其中集成的铜载流导线嵌入在离子阱电极下方的基板内,能够产生高磁场梯度。在室温下测得的铜层薄层电阻为 1.12 m Ω /sq,足够低,可以实现复杂的设计,而不会在大电流下产生过多的功率耗散导致热失控。在 40 K 的温度下,薄层电阻降至 20.9 μ Ω /sq,残余电阻比的下限为 100。可以施加 13 A 的连续电流,导致在离子位置处模拟磁场梯度为 144 T m − 1,对于我们设计中的特定反平行线对,该位置距离陷阱表面 125 μ m。
。CC-BY-NC-ND 4.0 国际许可 它是根据作者/资助者提供的,他已授予 medRxiv 永久展示预印本的许可。(未经同行评审认证)
摘要。基于人工智能的决策支持系统 (AI-based DSS) 在许多情况下变得越来越重要。这项工作旨在为新的价值共同创造过程等级定义一种人机交互类型,以帮助确定可以刺激人机交互中价值共同创造的因素。为了了解人机交互的结果是否有助于价值共同创造,以及以何种方式,所开展的工作是认识论和类型学的,也基于系统思维。已经创建了人类与非人类之间关系的新梯度矩阵,并确定了人机交互的类型,以适应新的价值共同创造过程程度,以及新的特定技能规模,包括语言、学习、知识、信任水平和知识禀赋。主要含义涉及需要定制决策支持系统 (DSS),以增强不同程度的关系强度,并为基于决策的 AI 用户确定见解。