零噪声外推 (ZNE) 是一种量子经典混合技术。它运行噪声水平不断增加的量子电路,提取每个电路的期望值,然后使用经典拟合外推无噪声环境中的理想期望值。在 Mitiq 的 ZNE 实现中,有两个相关的经典变量:(1) 用于查找 y 截距(理想期望值)的外推或拟合类型和 (2) 噪声缩放值,它们决定了噪声在运行的每个附加电路中如何增长 [3]。
自从第一次商业化和工业部署锂电池以来,国际电池行业和研发&I社区的全球电力平衡已经发生了很大的转变。日本已成为液体电解质锂离子电池的早期技术领导者,但自2015年以来,其国内行业已经失去了对中国和韩国制造商的市场份额,这受益于强大的政府支持。尤其是中国一直在迅速创新其国内电池技术。最初,中国的电池政策非常集中,目的是在1时赶上领先的国家。此外,保护性政策导致许多以前与韩国和日本供应商合作的中国汽车制造商将其电池订单转移给了国内制造商,以便从慷慨的补贴中受益。这一方面在促进中国的家庭电池价值链的种植中起着至关重要的作用2。在借助一项综合政府补贴计划的帮助下,从原材料到组件制造,牢房和包装生产以及电动汽车应用的整个价值链的成熟度后,中国已成为世界上最大的电动汽车市场。2国际能源机构估计,中国约占电池电池的75%,阴极的70%和阳极材料材料全球生产能力的85%。3
本文介绍了一种新型的混合企业线性编程(MILP)模型,用于在瑞典的Day-Ahead(DA)电力和频率封装储备(FCR)市场中堆叠电池储能系统(BESS)。该模型包括一个详细的日历和周期电池降低和市场技术需求建模,旨在最大程度地利用电池所有者从参与DA和三个FCR市场,正常运营(FCR-N)以及FCR(FCR-D)的潜在利润,以及进行上下调查的障碍(FCR-D)。为提出全面的结果,使用一分钟分辨率的真实数据对2022年进行连续的每日优化。模拟了五种利用模式,包括参与无FCR市场(仅DA),只有DA和FCR-N,只有DA和FCR-D上调,只有DA和FCR-D下调,以及DA和所有FCR市场。对于DA和多FCR市场的收入堆叠中的最大潜在利润可能为1MW-1MWH BESS的K€708,这是没有FCR参与情况的22倍。由多FCR市场参与导致的年度退化占电池容量损失的1.7%。考虑优化问题中的退化会使衰老减少29%,而不会对利润产生重大影响。所提出的模型可以作为评估电池操作策略和算法的盈利能力和可持续性的基准。
间充质干细胞(MSC)具有较高的外体释放能力,具有用作药物载体系统的潜力。外泌体还有效地证明了它们作为药物输送系统进入细胞的能力。这项研究旨在确定宫颈癌细胞(HELA)药物递送过程中MSCDERIVES外泌体影响的机制。在这项研究中,从出生时脐带(UCMSC)中分离出间充质干细胞。孤立的UCMSC以CD34,CD90,CD105和CD34标记为特征。使用电子显微镜检查外泌体的大小和形态。通过电穿孔将释放的外泌体(Exopac)加载释放的外泌体(Exopac),研究了在HELA癌症治疗中使用紫杉醇(Exopac)的潜力。确定exopac以较低的浓度和较短的时间影响了HeLa细胞。exopac抑制了SMAD3和SLUG蛋白,这些蛋白在细胞转移和血管生成中有效。同时,PAC显示了其对凋亡途径中蛋白质的影响,并诱导了BAX/BCL2比。在这项研究中,表明在上皮层层次过渡机制中有效的SMAD3和SLUG转录因子可以被外泌体药物载体抑制。已经证明,UCMSC可以用作药物输送系统,通过阻止细胞中的SMAD3和SLUG信号通路来抑制细胞侵袭。这项研究得到了Tubitak 1002的支持,项目编号为120S682。
背景:移动健康领域(MHealth)一直在不断扩展。在临床实践中集成MHealth应用程序和设备是一个重大而复杂的挑战。全科医生(GPS)是患者护理途径中的重要联系。由于他们是患者的首选医疗保健中介,GP在支持患者向MHealth的过渡中起着重要作用。目的:本研究旨在确定与法国全科医生对患者开出MHealth应用程序和设备的意愿相关的因素。方法:这项研究是APIAPPS项目的一部分,其总体目的是通过开发一个定制的平台来帮助它们,以帮助消除GPS面部的障碍。这项研究包括从法国多个医学院(里昂,尼斯和鲁恩)的总执业部门招募的GPS,以及学术GPS,医疗保健专业协会以及社交和专业网络的邮寄清单。参与者被要求填写一份基于网络的问卷,该问卷收集了有关各种社会人口统计学变量的数据,他们参与持续教育计划的指标以及他们致力于在患者咨询期间促进健康行为的时间以及表征其患者人群的指标。还收集了有关其对MHealth应用程序和设备的看法的数据。最后,调查表包括了用于测量GPS可接受开处方MHealth应用程序和设备的项目的项目。结果:在174 GPS中,有129(74.1%)宣布他们向患者开出MHealth应用程序和设备的意愿。参与多变量分析,参与持续的教育计划(赔率[OR] 6.17,95%CI 1.52-28.72),是法语的更好的患者基础指挥官(OR 1.45,95%CI 1.13-1.88),对MHEATH APPS和GP的医疗效果的效果以及MHEADE HEADTAR的效果,以及MHEADE效果的效果 - 实践(OR 1.04,95%CI 1.01-1.07),以及通过随机临床试验(OR 1.02,95%CI 1.00-1.04)对MHealth应用程序和设备的验证都与GPS愿意开处方MHealth应用程序和设备有关。相比之下,年龄较大的GPS(OR 0.95,95%CI 0.91-0.98),女性GPS(OR 0.26,95%CI 0.09-0.69),以及那些认为患者或医疗实践风险的人(或0.96,95%CI 0.94-0.99)是不太贴心的贴法。
1 Wageningen University and Research,人工智能,邮政信箱16,Wageningen,6700 AA,荷兰。皮埃尔·维亚拉(Pierre Viala),蒙彼利埃(Montpellier),34000,法国17莱布尼兹农业景观研究中心,模拟和数据科学,埃伯斯瓦尔德·斯特劳斯(EberswalderStra笔环境研究,计算水系统系,珀索斯特拉赛15号,莱比锡,04318,德国20欧盟委员会联合研究中心,粮食安全部门,E.Fermi 2749,ISPRA,VA I-21027,意大利2 Technical University of Munich, Chair of Data Science in Earth Observation, Arcisstraße 21, Munich, 80333, Germany 3 Purdue University, Department of Agronomy, 915 Mitch Daniels Blvd, West Lafayette, IN 47907, United States 4 Ankara University, Faculty Of Agriculture Engineering, Dögol Caddesi 06100 Tando˘gan, Ankara, 6110,土耳其5马里兰大学,地理科学系,7251 Preinkert Drive,Collega Park,MD 20742,美国6 NASA戈达德太空研究所,GISS气候影响小组,邮件代码611,纽约,纽约10025,纽约,10025 Vrije Universiteit Amsterdam,环境研究研究所,DE BOELELAAN 1105,阿姆斯特丹,1081 HV,荷兰9 Potsdam气候影响研究所,气候弹性研究部,PO Box 60 12 03,Potsdam,Potsdam,4412,德国10,Manitoba University of Manitoba University of Manitoba,Winn winn winn winn 5V6, Canada 11 Universitat de València, Image Processing Laboratory, C/ Catedràtic Agustín Escardino Benlloch, 9, València, 46980, Spain 12 Seidor Consulting, C/Provençals 44, Barcelona, 08019, Spain 13 International Crops Research Institute for the Semi-Arid Tropics, West and Central Africa Region Hub, PO Box 320,巴马科,马里14国际热带农业研究所,自然资源管理,邮政信箱30677,内罗毕,00100,00100,肯尼亚15联邦科学与工业研究组织(CSIRO),农业和食品,147 Underwood Wood Wood,珀斯,澳大利亚6014,澳大利亚16号,澳大利亚16号国家研究所,国家研究所,国家研究所农业研究所,农业和环境。
文献和多位专家指出了大型语言模型(LLM)的许多潜在风险,但对实际危害的直接测量仍然很少。AI风险评估到目前为止一直集中在衡量模型的功能上,但是模型的功能只是风险的指标,而不是衡量风险的指标。更好地建模和量化AI风险方案可以帮助桥接这种断开连接,并将LLM的功能与有形现实世界的危害联系起来。本文通过证明如何使用现有的AI基准来促进风险估计的创建,从而为该领域做出了早期贡献。我们描述了一项试点研究的结果,其中专家使用AI基准Cybench的信息来生成概率估计。我们表明,对于此目的,该方法似乎很有希望,同时指出可以进一步加强其在定量AI风险评估中的应用。
摘要。在过去几年中,数据湖的概念已成为数据存储和分析的时尚。因此,已经提出了几种方法来构建数据湖系统。但是,由于没有通常的共享标准来比较数据湖系统,因此很难评估此类建议。因此,我们在本文中介绍了DLBench+,这是一种评估和比较支持文本和/或表格内容的数据湖实现的基准。更具体地说,我们提出了一个由文本和CSV文档制成的数据模型,该模型是由一组各种任务组成的工作负载模型以及一组基于绩效的指标,所有这些指标都与数据湖的上下文有关。除了纯粹的定量评估之外,我们还提出了一种方法,以通过评估用户体验来定性评估数据湖系统。作为概念证明,我们使用dlbench+评估我们开发的开源数据湖系统。
印度合作伙伴的首席研究员(PI)5必须通过在大学和其他学术机构工作的科学家/工程师/技术人员才能通过在线模式提交其完整的项目建议(科学文档,简历,在线填充信息);研发机构/实验室,具有足够的基础设施和设施来进行研发。PI(S)应该具有相关的经验,这是由以前的原型商业化或开发或实用领域的实用经验所证明的,具有现场知识。建议在该提案中包括一名联合主管研究者(CO-PI)6。
图1显示了构建的一般几何形状。激光焊缝在电线馈周周围有三个梁同心。挑战相关的测量值将包括残留应力/应变成分,在构建机器上拔掉后的底板偏转以及在构建过程中的底板温度。在构建过程中,激光功率保持恒定,但是进料速度和行进速度变化以产生良好的几何形状。激光校准数据,电线和底板材料组成,广泛的构建信息,包括编程的进料速率和旅行速度(G代码)以及一些热电偶数据。我们将不提供材料属性数据。