国会将涵盖胃肠病学和肝病学的所有领域,从炎症性肠病,消化系统的肿瘤,肝脏疾病,胆道系统和胰腺,功能消化系统疾病,肠道菌群,肠道菌群到内镜和超声。国会将在亚得利肝论坛之前举行,该论坛代表了来自东南和中欧的主要肝病学家的传统会议,并参加了其他欧洲其他卓越中心的高级专家。关于消化道初期条件的研究生课程也将在国会前一天组织。此外,在国会期间,将组织有关内窥镜检查和超声检查的动手研讨会,并将举办一次会议,致力于提交给国会提交的最佳摘要。
内窥镜检查和先进的治疗技术,确保NYU Langone Health仍然是复杂和创新程序的目的地。从学术上讲,我们将培养一种发现文化,以探索新颖的思想,工具和技术,并开发解决新标准的解决方案。作为内窥镜检查主管,您将与多样化的医师和员工团队紧密合作。您计划如何培养合作和增强患者护理?合作是医疗保健卓越的基石。我计划培养一种文化,无论是医生,护士还是支持人员,每个声音都受到重视,并有助于我们共同的出色患者护理使命。常规的多学科案例讨论,跨部门伙伴关系和透明的沟通将是基础的。此外,我们将实施精简的系统以提高效率,以确保患者及时且全面的护理。通过授权我们的团队提供应有的工具,资源和认可,我们可以共同实现非凡的成果。您希望优先考虑研究特定领域或临床重点吗?我的主要重点是进步治疗性内窥镜检查,包括最低侵入性的技术,例如内窥镜粘膜下剖消扫(ESD),多多内镜下肌切开术(Poem)和内窥镜缝合。
内镜医师可以轻松找到基于证据的、易于使用的临床实践指南,以增强和支持最佳实践决策。执业医师、研究员、住院医师、高级执业医师和医学生利用并受益于 ASGE 提供的个性化教育、培训、宣传、指导和 GI 实践管理信息。患者 ASGE 提供有关内镜手术和相关疾病的准确、全面且患者友好的医疗保健信息。由于 ASGE 医师提供高质量的内镜护理,来自各种文化背景的患者都会寻求 ASGE 成员和 ASGE 认可的高质量内镜部门。所有患者都可以立即获得高质量的 GI 护理和内镜检查,包括结肠镜检查以筛查结直肠癌和结肠镜检查以检测结直肠癌阳性。由于 ASGE 的宣传、教育和创新,更多患者的 GI 健康状况得到改善。ASGE 继续引领开发新治疗技术的创新。 ASGE 组织作为全球领先的胃肠内窥镜教育、临床培训和研究机构,ASGE 是内窥镜医师的宝贵盟友,也是胃肠道疾病诊断和治疗创新的倡导者。ASGE 是内窥镜技术、基于模拟的医学教育以及内窥镜研究设计和推广方面最前沿的组织。
近年来,肠道渗透性已成为肠道健康的主要特征。本文的观点是介绍基于文献对当前对睾丸渗透性的理解的概述。肠道通透性的概念从发现紧密连接的发现开始了其发展 - 上皮细胞之间分离的蛋白质复合物。组织病理学是微观诊断的主要选择,它允许确定紧密连接,炎症和上皮细胞受损的变化。此外,建议将肠道脂肪酸结合蛋白I-FABP和Zonulin作为上皮屏障的生物标志物。至于视觉检测,文献提出了胶囊内窥镜检查和共聚焦激光镜检查。使用后者可以产生小肠形态的图像,并可以看到小肠道腔,细胞,绒毛和隐窝。然而,数字胶囊内窥镜检查中的前进更适用,并有助于研究肠碳纤维和肠病,也可以在治疗方面带来有希望的结果。尽管对肠道通透性的损害可以归类为某种肠病,然后已经建立了某些肠道途径与铁缺乏症的关联,但铁缺乏症和肠道通透性的直接关联尚未探索。关键字:肠道,内窥镜检查,肠病毒,肠病,缺铁性贫血。
9月10日训练培训师6 RCSI,第26号街12月12日,9月12日次要操作研讨会7.5 RCSI,第26号街26号约克街17 9月17日大创伤7.5 RCSI 7.5 RCSI,NO 26 YORK STREET,9月17日9月17日,9月17日,基本内窥镜7.5 RCSI,NO RCSI,NO 26 YORK Street,No 26 York Street 18 9月18日,9月18日紧急超级16号,不及26号。 7.5 RCSI,第26号约克街08 10月8日活跃旁观者干预培训1 Zoom 1月15日基本内窥镜7.5 RCSI,NO 26 York Street 16 10月16日10月16日在紧急放射学日1 6 ZOOM
摘要 背景和目的 随着人工智能 (AI) 可能融入临床实践,了解最终用户对这项新技术的看法至关重要。这项研究得到了英国胃肠病学会 (BSG) 的认可,旨在评估英国胃肠病学和内镜学界对 AI 的看法。 方法 制定了一项在线调查,并分发给英国各地的胃肠病学家和内镜医师。 结果 104 名参与者完成了调查。内镜质量改进 (97%) 和更好的内镜诊断 (92%) 被认为是 AI 对临床实践最有益的应用。最大的挑战是错误诊断的责任 (85%) 和算法的潜在偏见 (82%)。缺乏指南 (92%) 被认为是在常规临床实践中采用 AI 的最大障碍。参与者认为实时内镜图像诊断 (95%) 是 AI 的研究重点,而认为 AI 研究最重大的障碍是资金 (82%) 和注释数据的可用性 (76%)。参与者认为 BSG AI 工作组的优先事项是确定研究重点 (96%)、在临床实践中采用 AI 设备的指南 (93%) 以及支持开展多中心临床试验 (91%)。结论 这项调查确定了英国胃肠病学和内镜学界对临床实践和研究中的 AI 的看法,并确定了新成立的 BSG AI 工作组的优先事项。
可以通过协助或进行实时手术,具有或不具有增强的脉冲血管和脑脊液灌注(CSF)灌注的尸体解剖来学习 cadaver解剖可以通过,并练习活动物,死动物模型,合成模型,三维型模型,具有动物,杂种,杂种,杂种,杂物,杂种,cada cada cada型模型(VR)模拟器和混合模拟器(合并的物理模型和VR模型)。 神经外科技能实验室具有基础和先进的学习,所有教学医院都应在那里。 技能可以从模拟模型或VR转移到尸体进行现场手术。 分阶段学习(首先使用简单的模型学习基本的内窥镜技术,然后是动物模型,然后是增强尸体)是首选的学习方法。 尽管大多数调查都赞成动物模型和尸体作为现在最喜欢的训练模型的现场手术和实践,但在将来的VR中,VR也可能成为一种受欢迎的学习方法。 本文基于我们在10,000多个神经内窥镜手术中的经验,以及来自950多名神经内窥镜研究员的反馈或参加自2010年以来每6个每6个每6个工作店的顾问的反馈。。 在PubMed和Google Scholar上进行了文献搜索(神经内存)和(学习)和(神经内存镜)和(培训),分别产生了121和213个结果。 在其中,为本文选择了77篇文章。 大多数培训计划通常专注于微管外科培训。 在大多数中心缺乏神经内窥镜检查的学习设施。可以通过协助或进行实时手术,具有或不具有增强的脉冲血管和脑脊液灌注(CSF)灌注的尸体解剖来学习 cadaver解剖可以通过,并练习活动物,死动物模型,合成模型,三维型模型,具有动物,杂种,杂种,杂种,杂物,杂种,cada cada cada型模型(VR)模拟器和混合模拟器(合并的物理模型和VR模型)。 神经外科技能实验室具有基础和先进的学习,所有教学医院都应在那里。 技能可以从模拟模型或VR转移到尸体进行现场手术。 分阶段学习(首先使用简单的模型学习基本的内窥镜技术,然后是动物模型,然后是增强尸体)是首选的学习方法。 尽管大多数调查都赞成动物模型和尸体作为现在最喜欢的训练模型的现场手术和实践,但在将来的VR中,VR也可能成为一种受欢迎的学习方法。 本文基于我们在10,000多个神经内窥镜手术中的经验,以及来自950多名神经内窥镜研究员的反馈或参加自2010年以来每6个每6个每6个工作店的顾问的反馈。。 在PubMed和Google Scholar上进行了文献搜索(神经内存)和(学习)和(神经内存镜)和(培训),分别产生了121和213个结果。 在其中,为本文选择了77篇文章。 大多数培训计划通常专注于微管外科培训。 在大多数中心缺乏神经内窥镜检查的学习设施。cadaver解剖可以通过,并练习活动物,死动物模型,合成模型,三维型模型,具有动物,杂种,杂种,杂种,杂物,杂种,cada cada cada型模型(VR)模拟器和混合模拟器(合并的物理模型和VR模型)。 神经外科技能实验室具有基础和先进的学习,所有教学医院都应在那里。 技能可以从模拟模型或VR转移到尸体进行现场手术。 分阶段学习(首先使用简单的模型学习基本的内窥镜技术,然后是动物模型,然后是增强尸体)是首选的学习方法。 尽管大多数调查都赞成动物模型和尸体作为现在最喜欢的训练模型的现场手术和实践,但在将来的VR中,VR也可能成为一种受欢迎的学习方法。 本文基于我们在10,000多个神经内窥镜手术中的经验,以及来自950多名神经内窥镜研究员的反馈或参加自2010年以来每6个每6个每6个工作店的顾问的反馈。。 在PubMed和Google Scholar上进行了文献搜索(神经内存)和(学习)和(神经内存镜)和(培训),分别产生了121和213个结果。 在其中,为本文选择了77篇文章。 大多数培训计划通常专注于微管外科培训。 在大多数中心缺乏神经内窥镜检查的学习设施。cadaver解剖可以通过,并练习活动物,死动物模型,合成模型,三维型模型,具有动物,杂种,杂种,杂种,杂物,杂种,cada cada cada型模型(VR)模拟器和混合模拟器(合并的物理模型和VR模型)。 神经外科技能实验室具有基础和先进的学习,所有教学医院都应在那里。 技能可以从模拟模型或VR转移到尸体进行现场手术。 分阶段学习(首先使用简单的模型学习基本的内窥镜技术,然后是动物模型,然后是增强尸体)是首选的学习方法。 尽管大多数调查都赞成动物模型和尸体作为现在最喜欢的训练模型的现场手术和实践,但在将来的VR中,VR也可能成为一种受欢迎的学习方法。 本文基于我们在10,000多个神经内窥镜手术中的经验,以及来自950多名神经内窥镜研究员的反馈或参加自2010年以来每6个每6个每6个工作店的顾问的反馈。。 在PubMed和Google Scholar上进行了文献搜索(神经内存)和(学习)和(神经内存镜)和(培训),分别产生了121和213个结果。 在其中,为本文选择了77篇文章。 大多数培训计划通常专注于微管外科培训。 在大多数中心缺乏神经内窥镜检查的学习设施。cadaver解剖可以通过,并练习活动物,死动物模型,合成模型,三维型模型,具有动物,杂种,杂种,杂种,杂物,杂种,cada cada cada型模型(VR)模拟器和混合模拟器(合并的物理模型和VR模型)。 神经外科技能实验室具有基础和先进的学习,所有教学医院都应在那里。 技能可以从模拟模型或VR转移到尸体进行现场手术。 分阶段学习(首先使用简单的模型学习基本的内窥镜技术,然后是动物模型,然后是增强尸体)是首选的学习方法。 尽管大多数调查都赞成动物模型和尸体作为现在最喜欢的训练模型的现场手术和实践,但在将来的VR中,VR也可能成为一种受欢迎的学习方法。 本文基于我们在10,000多个神经内窥镜手术中的经验,以及来自950多名神经内窥镜研究员的反馈或参加自2010年以来每6个每6个每6个工作店的顾问的反馈。。 在PubMed和Google Scholar上进行了文献搜索(神经内存)和(学习)和(神经内存镜)和(培训),分别产生了121和213个结果。 在其中,为本文选择了77篇文章。 大多数培训计划通常专注于微管外科培训。 在大多数中心缺乏神经内窥镜检查的学习设施。cadaver解剖可以通过,并练习活动物,死动物模型,合成模型,三维型模型,具有动物,杂种,杂种,杂种,杂物,杂种,cada cada cada型模型(VR)模拟器和混合模拟器(合并的物理模型和VR模型)。 神经外科技能实验室具有基础和先进的学习,所有教学医院都应在那里。 技能可以从模拟模型或VR转移到尸体进行现场手术。 分阶段学习(首先使用简单的模型学习基本的内窥镜技术,然后是动物模型,然后是增强尸体)是首选的学习方法。 尽管大多数调查都赞成动物模型和尸体作为现在最喜欢的训练模型的现场手术和实践,但在将来的VR中,VR也可能成为一种受欢迎的学习方法。 本文基于我们在10,000多个神经内窥镜手术中的经验,以及来自950多名神经内窥镜研究员的反馈或参加自2010年以来每6个每6个每6个工作店的顾问的反馈。。 在PubMed和Google Scholar上进行了文献搜索(神经内存)和(学习)和(神经内存镜)和(培训),分别产生了121和213个结果。 在其中,为本文选择了77篇文章。 大多数培训计划通常专注于微管外科培训。 在大多数中心缺乏神经内窥镜检查的学习设施。cadaver解剖可以通过,并练习活动物,死动物模型,合成模型,三维型模型,具有动物,杂种,杂种,杂种,杂物,杂种,cada cada cada型模型(VR)模拟器和混合模拟器(合并的物理模型和VR模型)。 神经外科技能实验室具有基础和先进的学习,所有教学医院都应在那里。 技能可以从模拟模型或VR转移到尸体进行现场手术。 分阶段学习(首先使用简单的模型学习基本的内窥镜技术,然后是动物模型,然后是增强尸体)是首选的学习方法。 尽管大多数调查都赞成动物模型和尸体作为现在最喜欢的训练模型的现场手术和实践,但在将来的VR中,VR也可能成为一种受欢迎的学习方法。 本文基于我们在10,000多个神经内窥镜手术中的经验,以及来自950多名神经内窥镜研究员的反馈或参加自2010年以来每6个每6个每6个工作店的顾问的反馈。。 在PubMed和Google Scholar上进行了文献搜索(神经内存)和(学习)和(神经内存镜)和(培训),分别产生了121和213个结果。 在其中,为本文选择了77篇文章。 大多数培训计划通常专注于微管外科培训。 在大多数中心缺乏神经内窥镜检查的学习设施。cadaver解剖可以通过,并练习活动物,死动物模型,合成模型,三维型模型,具有动物,杂种,杂种,杂种,杂物,杂种,cada cada cada型模型(VR)模拟器和混合模拟器(合并的物理模型和VR模型)。 神经外科技能实验室具有基础和先进的学习,所有教学医院都应在那里。 技能可以从模拟模型或VR转移到尸体进行现场手术。 分阶段学习(首先使用简单的模型学习基本的内窥镜技术,然后是动物模型,然后是增强尸体)是首选的学习方法。 尽管大多数调查都赞成动物模型和尸体作为现在最喜欢的训练模型的现场手术和实践,但在将来的VR中,VR也可能成为一种受欢迎的学习方法。 本文基于我们在10,000多个神经内窥镜手术中的经验,以及来自950多名神经内窥镜研究员的反馈或参加自2010年以来每6个每6个每6个工作店的顾问的反馈。。 在PubMed和Google Scholar上进行了文献搜索(神经内存)和(学习)和(神经内存镜)和(培训),分别产生了121和213个结果。 在其中,为本文选择了77篇文章。 大多数培训计划通常专注于微管外科培训。 在大多数中心缺乏神经内窥镜检查的学习设施。cadaver解剖可以通过,并练习活动物,死动物模型,合成模型,三维型模型,具有动物,杂种,杂种,杂种,杂物,杂种,cada cada cada型模型(VR)模拟器和混合模拟器(合并的物理模型和VR模型)。 神经外科技能实验室具有基础和先进的学习,所有教学医院都应在那里。 技能可以从模拟模型或VR转移到尸体进行现场手术。 分阶段学习(首先使用简单的模型学习基本的内窥镜技术,然后是动物模型,然后是增强尸体)是首选的学习方法。 尽管大多数调查都赞成动物模型和尸体作为现在最喜欢的训练模型的现场手术和实践,但在将来的VR中,VR也可能成为一种受欢迎的学习方法。 本文基于我们在10,000多个神经内窥镜手术中的经验,以及来自950多名神经内窥镜研究员的反馈或参加自2010年以来每6个每6个每6个工作店的顾问的反馈。。 在PubMed和Google Scholar上进行了文献搜索(神经内存)和(学习)和(神经内存镜)和(培训),分别产生了121和213个结果。 在其中,为本文选择了77篇文章。 大多数培训计划通常专注于微管外科培训。 在大多数中心缺乏神经内窥镜检查的学习设施。cadaver解剖可以通过,并练习活动物,死动物模型,合成模型,三维型模型,具有动物,杂种,杂种,杂种,杂物,杂种,cada cada cada型模型(VR)模拟器和混合模拟器(合并的物理模型和VR模型)。 神经外科技能实验室具有基础和先进的学习,所有教学医院都应在那里。 技能可以从模拟模型或VR转移到尸体进行现场手术。 分阶段学习(首先使用简单的模型学习基本的内窥镜技术,然后是动物模型,然后是增强尸体)是首选的学习方法。 尽管大多数调查都赞成动物模型和尸体作为现在最喜欢的训练模型的现场手术和实践,但在将来的VR中,VR也可能成为一种受欢迎的学习方法。 本文基于我们在10,000多个神经内窥镜手术中的经验,以及来自950多名神经内窥镜研究员的反馈或参加自2010年以来每6个每6个每6个工作店的顾问的反馈。。 在PubMed和Google Scholar上进行了文献搜索(神经内存)和(学习)和(神经内存镜)和(培训),分别产生了121和213个结果。 在其中,为本文选择了77篇文章。 大多数培训计划通常专注于微管外科培训。 在大多数中心缺乏神经内窥镜检查的学习设施。cadaver解剖可以通过,并练习活动物,死动物模型,合成模型,三维型模型,具有动物,杂种,杂种,杂种,杂物,杂种,cada cada cada型模型(VR)模拟器和混合模拟器(合并的物理模型和VR模型)。 神经外科技能实验室具有基础和先进的学习,所有教学医院都应在那里。 技能可以从模拟模型或VR转移到尸体进行现场手术。 分阶段学习(首先使用简单的模型学习基本的内窥镜技术,然后是动物模型,然后是增强尸体)是首选的学习方法。 尽管大多数调查都赞成动物模型和尸体作为现在最喜欢的训练模型的现场手术和实践,但在将来的VR中,VR也可能成为一种受欢迎的学习方法。 本文基于我们在10,000多个神经内窥镜手术中的经验,以及来自950多名神经内窥镜研究员的反馈或参加自2010年以来每6个每6个每6个工作店的顾问的反馈。。 在PubMed和Google Scholar上进行了文献搜索(神经内存)和(学习)和(神经内存镜)和(培训),分别产生了121和213个结果。 在其中,为本文选择了77篇文章。 大多数培训计划通常专注于微管外科培训。 在大多数中心缺乏神经内窥镜检查的学习设施。cadaver解剖可以通过,并练习活动物,死动物模型,合成模型,三维型模型,具有动物,杂种,杂种,杂种,杂物,杂种,cada cada cada型模型(VR)模拟器和混合模拟器(合并的物理模型和VR模型)。 神经外科技能实验室具有基础和先进的学习,所有教学医院都应在那里。 技能可以从模拟模型或VR转移到尸体进行现场手术。 分阶段学习(首先使用简单的模型学习基本的内窥镜技术,然后是动物模型,然后是增强尸体)是首选的学习方法。 尽管大多数调查都赞成动物模型和尸体作为现在最喜欢的训练模型的现场手术和实践,但在将来的VR中,VR也可能成为一种受欢迎的学习方法。 本文基于我们在10,000多个神经内窥镜手术中的经验,以及来自950多名神经内窥镜研究员的反馈或参加自2010年以来每6个每6个每6个工作店的顾问的反馈。。 在PubMed和Google Scholar上进行了文献搜索(神经内存)和(学习)和(神经内存镜)和(培训),分别产生了121和213个结果。 在其中,为本文选择了77篇文章。 大多数培训计划通常专注于微管外科培训。 在大多数中心缺乏神经内窥镜检查的学习设施。cadaver解剖可以通过,并练习活动物,死动物模型,合成模型,三维型模型,具有动物,杂种,杂种,杂种,杂物,杂种,cada cada cada型模型(VR)模拟器和混合模拟器(合并的物理模型和VR模型)。 神经外科技能实验室具有基础和先进的学习,所有教学医院都应在那里。 技能可以从模拟模型或VR转移到尸体进行现场手术。 分阶段学习(首先使用简单的模型学习基本的内窥镜技术,然后是动物模型,然后是增强尸体)是首选的学习方法。 尽管大多数调查都赞成动物模型和尸体作为现在最喜欢的训练模型的现场手术和实践,但在将来的VR中,VR也可能成为一种受欢迎的学习方法。 本文基于我们在10,000多个神经内窥镜手术中的经验,以及来自950多名神经内窥镜研究员的反馈或参加自2010年以来每6个每6个每6个工作店的顾问的反馈。。 在PubMed和Google Scholar上进行了文献搜索(神经内存)和(学习)和(神经内存镜)和(培训),分别产生了121和213个结果。 在其中,为本文选择了77篇文章。 大多数培训计划通常专注于微管外科培训。 在大多数中心缺乏神经内窥镜检查的学习设施。cadaver解剖可以通过,并练习活动物,死动物模型,合成模型,三维型模型,具有动物,杂种,杂种,杂种,杂物,杂种,cada cada cada型模型(VR)模拟器和混合模拟器(合并的物理模型和VR模型)。 神经外科技能实验室具有基础和先进的学习,所有教学医院都应在那里。 技能可以从模拟模型或VR转移到尸体进行现场手术。 分阶段学习(首先使用简单的模型学习基本的内窥镜技术,然后是动物模型,然后是增强尸体)是首选的学习方法。 尽管大多数调查都赞成动物模型和尸体作为现在最喜欢的训练模型的现场手术和实践,但在将来的VR中,VR也可能成为一种受欢迎的学习方法。 本文基于我们在10,000多个神经内窥镜手术中的经验,以及来自950多名神经内窥镜研究员的反馈或参加自2010年以来每6个每6个每6个工作店的顾问的反馈。。 在PubMed和Google Scholar上进行了文献搜索(神经内存)和(学习)和(神经内存镜)和(培训),分别产生了121和213个结果。 在其中,为本文选择了77篇文章。 大多数培训计划通常专注于微管外科培训。 在大多数中心缺乏神经内窥镜检查的学习设施。cadaver解剖可以通过,并练习活动物,死动物模型,合成模型,三维型模型,具有动物,杂种,杂种,杂种,杂物,杂种,cada cada cada型模型(VR)模拟器和混合模拟器(合并的物理模型和VR模型)。 神经外科技能实验室具有基础和先进的学习,所有教学医院都应在那里。 技能可以从模拟模型或VR转移到尸体进行现场手术。 分阶段学习(首先使用简单的模型学习基本的内窥镜技术,然后是动物模型,然后是增强尸体)是首选的学习方法。 尽管大多数调查都赞成动物模型和尸体作为现在最喜欢的训练模型的现场手术和实践,但在将来的VR中,VR也可能成为一种受欢迎的学习方法。 本文基于我们在10,000多个神经内窥镜手术中的经验,以及来自950多名神经内窥镜研究员的反馈或参加自2010年以来每6个每6个每6个工作店的顾问的反馈。。cadaver解剖可以通过,并练习活动物,死动物模型,合成模型,三维型模型,具有动物,杂种,杂种,杂种,杂物,杂种,cada cada cada型模型(VR)模拟器和混合模拟器(合并的物理模型和VR模型)。神经外科技能实验室具有基础和先进的学习,所有教学医院都应在那里。技能可以从模拟模型或VR转移到尸体进行现场手术。分阶段学习(首先使用简单的模型学习基本的内窥镜技术,然后是动物模型,然后是增强尸体)是首选的学习方法。尽管大多数调查都赞成动物模型和尸体作为现在最喜欢的训练模型的现场手术和实践,但在将来的VR中,VR也可能成为一种受欢迎的学习方法。本文基于我们在10,000多个神经内窥镜手术中的经验,以及来自950多名神经内窥镜研究员的反馈或参加自2010年以来每6个每6个每6个工作店的顾问的反馈。在PubMed和Google Scholar上进行了文献搜索(神经内存)和(学习)和(神经内存镜)和(培训),分别产生了121和213个结果。在其中,为本文选择了77篇文章。大多数培训计划通常专注于微管外科培训。在大多数中心缺乏神经内窥镜检查的学习设施。学习神经镜镜检查与微神经外科有很大不同。从微管外科手术转换为神经内镜镜检查可能具有挑战性。研究生培训中心应具有装备良好的神经副本技能实验室,手术教育课程应包括神经内窥镜培训。学习内窥镜检查是关于该技术的优势,并通过连续训练克服内窥镜检查的局限性。
B008早期妊娠评估单元F303教育与临床技能中心D102 Elmwood A001急诊室A003急诊室2 E101内窥镜单元D204眼诊-Phoenix单位
1 人工智能,B UILT IN ,https://builtin.com/artificial-intelligence [https://perma.cc/HN7V- RVGF] [以下简称“人工智能”]。2 Christopher Manning,人工智能,斯坦福大学(2020 年 9 月),https://hai.stanford.edu/sites/default/files/2020-09/AI-Definitions-HAI.pdf [https://perma.cc/U6KC- 9F4E]。3 同上;参见 Thomas Davenport 和 Ravi Kalakota,《人工智能在医疗保健中的潜力》,6(2) F UTURE H EALTH C ARE J. 94 (2019)。4 参见 Adam Bohr 和 Kaveh Memarzadeh,《人工智能在医疗保健应用中的兴起》,《人工智能在医疗保健中的应用》25 (2020)。 5 Vivek Kaul 等人,医学领域人工智能史,92 G ASTROINTESTINAL ENDOSCOPY JOURNAL 807, 809 (2020)。6 同上。7 同上。8 Davenport & Kalakota,上文注 3,第 94 页。9 同上。第 95 页。10 同上。第 96 页。