固态发光有机化合物已在各种各样的研究领域找到了无数应用,从LED系统1到刺激响应开关2和化学传感器3。这是因为它们与基于重金属离子的发射器和量子点相比成本低、易于扩大规模且毒性较低或无毒性。在聚合物材料的某些应用中,观察纳米级变化的可能性可能有助于理解特性和纳米组织的细微变化,这些变化可能对材料的本体特性产生巨大影响。4 在这种情况下,将发光有机化合物和聚合物结合起来可以成为一种很好的方法,使材料能够在可能在失效前改变其物理特性的条件下自主监测其长期稳定性。
基于可持续发展策略和实际应用要求,至关重要的是发展高强度,可回收和燃气 - 降压聚氨酯(PU)弹性体。因此,具有充分的硼烷酯键和含有磷的组的动态性弹药弹性(PU-DP 1-7),可重新加工,高性能的聚氨酯弹性体(PU-DP 1-7)。PU-DP 1 - 7的化学结构通过傅立叶变换红外光谱法(FTIR)和X射线光电子光谱(XPS)证实。pu-dp 1 - 7显示在900 nm的波长下的透射率约为60%,磷和硼元素均匀分布在其表面内,证实了统一的交联网络的形成。含磷和硼隆的组的包含PU-DP 1-7具有垂直燃烧(UL-94)V-0等级,表明所需的阻燃性。此外,PU-DP 1-7的拉伸强度为42.7 MPa,在休息时的伸长率为616.9%,由于其网络中的丰富氢键,对各种底物具有很高的粘附强度。此外,动态硼酸酯键endow pu-dp 1 - 7具有Su Perior物理回收和形状内存性能。在130℃进行热压后,改革后的PU-DP 1-7胶片显示出在休息时伸长率的恢复效率的83.6%。这项工作提出了一种综合策略,可以通过引入含磷的片段和动态的硼烯酯键来创建具有出色的机械和形状 - 内存性能,具有出色的机械和形状 - 内存性能的综合策略。
有机混合离子 - 电子诱导者(OMIEC)是许多(光学)电子和能源收集/存储应用的新兴材料技术。[1]在OMIEC中,离子和电子之间的强耦合可以有效地存储和信号传导。[2]出于这个原因,OMIEC在电色素显示器中发现了应用,[3]发光的电化学细胞,[4]超级电容器/电池,[5] Sensors,[6]热电学,[7],[7]和执行器,[8],[8],仅命名少数。在有机电化学晶体管(OECT)中作为活性通道材料实施时,[9] OMIECS具有创纪录的跨导率,低操作性电压和高电流均匀性。[10]这些属性使OECT成为化学/生物逻辑传感的有前途的技术,[11]医学诊断,[12]大型可打印电路[13]和Neu-Romorphic Computing。[14]
3. 联合国妇女署的三重任务,加上其全球网络和深厚的政策和方案规划专业知识,继续赋予该实体独特的能力:(i) 支持会员国加强性别平等和增强妇女权能的全球规范和标准,并将性别观点纳入其他专题领域的主流;(ii) 促进整个联合国系统的协调和一致性,以加强性别平等和增强妇女权能的问责制和成果;(iii) 开展业务活动,应会员国的要求,支持其将全球规范和标准转化为区域和国家一级的立法、政策和战略。这使联合国妇女署能够将全球、国家和地方行为者联系起来,为在全世界实现性别平等和增强妇女权能创造有利环境。
我们研究一般量子资源的一次性提炼,提供该任务中可实现的最大保真度的统一定量描述,并揭示广泛资源类别之间的相似性。我们建立了适用于所有凸资源理论的资源提炼的基本定量和定性限制。我们表明,每个凸量子资源理论都承认纯粹的最大资源状态的有意义的概念,该概念最大化了几个操作相关性的单调并在提炼中得到使用。我们赋予广义鲁棒性度量以操作意义,作为在许多资源类别中提炼此类最大状态的性能的精确量化器,包括二分和多分纠缠、多级相干性以及整个仿射资源理论家族,其中包括不对称、相干性和热力学等重要示例。
茶是世界上最广泛的饮料之一。它是生物活性化合物的丰富来源,包括epigallocatechin Gallate(EGCG),鲁丁蛋白,槲皮素,食道酸和单宁酸,它们已被广泛研究,以实现其潜在的健康益处。茶厂(Camellia sinensis)属于Camellia L.属和家族剧院。与其他植物相比,茶厂的次要代谢物不仅具有独特的治疗质量,而且使人类健康受益。作为重要的经济植物,已经在许多领域进行了茶,包括健康,粮食生产和文化。这些代谢产物具有抗氧化剂,抗菌和抗炎性特性,这可能有助于降低慢性疾病的风险,例如心血管疾病,癌症和神经退行性疾病。茶厂是多年生和
概览我们是激光雷达及感知解决方案市场的全球领导者。通过整合硬件和软件,我们与市场上大多数仅专注于硬件的激光雷达公司有所差异。激光雷达与视觉或其他传感器相结合形成感知解决方案,使汽车和机器人具备感知能力。我们基于芯片驱动的激光雷达硬件和人工智能感知软件开发解决方案,拓展应用场景并实现行业规模商业化。我们的业务主要包括(i)销售用于ADAS、机器人及其他非汽车行业(如清洁、物流、工业、公共服务和检查等)的激光雷达硬件产品,(ii)销售集成我们的激光雷达硬件和人工智能感知软件的激光雷达感知解决方案,以及(iii)提供技术开发及其他服务。
构建进化的细菌底盘通常依赖于功能蛋白的定向进化。1 进化的蛋白质替代宿主中的天然对应物,从而形成具有特定表型的进化细菌底盘,2 例如大肠杆菌中进化的RpsE和酵母中的PfDHFR分别赋予壮观霉素抗性 3 和乙胺嘧啶抗性 4。然而,外源DNA的替代会影响宿主的安全性,这限制了宿主在某些领域的应用,特别是在食品工业中。因此,期望宿主自身的蛋白质得到进化。蛋白质定向进化的技术框架已经从体外发展到体内。5 – 7 定向进化的典型策略是随机诱变、半理性设计和理性设计。它们都严重依赖于从基因克隆、体外诱变、异源或整合的几个迭代步骤的过程
该奖学金由 Allison Aman 博士的朋友和家人设立。Aman 博士于 1974 年加入学院教职员工队伍,并从 1976 年起担任市中心校区生物学项目负责人,直至 1983 年 1 月去世。Aman 博士的丈夫 James 生前支持该奖学金,去世后留下遗赠以进一步资助该基金。要获得该奖学金,学生必须就读 AS 科学课程或数学、科学和工程学院课程。他们的累积 GPA 必须至少为 3.2,并且已完成至少 12 个适用于课程的非发展性课程学期学分。学生必须完成三个或更多学期学分的科学或数学课程(前缀为 BIO、CHM、NAS 和 MTH),成绩为“C”或更高。美国公路工程师协会,旧自治领分会 (ASHE)
DNA合成技术已经发展到现在合成整个基因组是实际的。已经进行了多种方法,首先是为了合成单个基因,但最终是从划痕整个基因组中大量编辑或写入的。合成基因组本质上可以是天然序列的克隆,但是这种方法并没有教会我们许多新的生物学。具有新型特性的赋予基因组的能力为您提供了特殊的希望,可以使问题不容易通过常规的基因 - AT-AT-AT-AT-AT-ATI-ATIPED方法接近。这些包括有关进化的问题以及基因组在从根本上进行信息,代谢和遗传上的有线方式。在这里回顾了与如何在基因组量表上设计,建造和交付大型DNA有关的技术和技术。对这些原则的更深入的理解可能有一天会导致从头开始设计基因组的能力。