Espinosa-Carrasco 等人最近发表的一篇论文 1 阐明了肿瘤内免疫三联体(由 CD4 + T 细胞、CD8 + T 细胞和树突状细胞 (DC) 组成的独特集群)在介导有效的抗肿瘤反应中的关键作用。这些三联体确保 CD8 + T 细胞通过相同的 DC 介导从 CD4 + T 细胞获得必要的帮助,从而有效地靶向和摧毁癌细胞。该文章的新颖见解表明,重点应从增加免疫细胞数量转移到优化它们在肿瘤微环境中的相互作用。这项开创性的研究不仅强调了 CD4 + T 细胞和 DC 的关键作用,而且突出了肿瘤微环境中免疫细胞亚群之间错综复杂的相互作用。先前的研究已经揭示了 CD4 + T 细胞在支持 CD8 + T 细胞反应中的重要性 2 。肿瘤微环境中免疫细胞的空间定位和相互作用的重要作用也得到了强调 3,4 。过继性 T 细胞疗法的研究表明,同时转移 CD4 + 和 CD8 + T 细胞比单独转移 CD8 + T 细胞可获得更好的治疗效果 2,5 ,因为 CD4 + T 细胞有助于维持 CD8 + T 细胞的效应功能并防止其衰竭。这些研究共同支持了免疫细胞类型(特别是 CD4 + 和 CD8 + T 细胞)之间协调相互作用的要求,以实现有效的抗肿瘤免疫。
摘要 背景 尽管免疫检查点抑制剂已成为临床肿瘤学的突破,但这些疗法未能在相当一部分患者中产生持久的反应。这种缺乏长期疗效的原因可能是预先存在的连接先天免疫和适应性免疫的网络较差。在这里,我们提出了一种基于反义寡核苷酸 (ASO) 的策略,该策略双重靶向 Toll 样受体 9 (TLR9) 和程序性细胞死亡配体 1 (PD-L1),旨在克服对抗 PD-L1 单克隆疗法的耐药性。方法 我们设计了一种高亲和力免疫调节 IM-TLR9:PD-L1-ASO 反义寡核苷酸(以下简称 IM-T9P1-ASO),靶向小鼠 PD-L1 信使 RNA 并激活 TLR9。然后,我们进行了体外和体内研究,以验证 IM-T9P1-ASO 在肿瘤和引流淋巴结中的活性、功效和生物学效应。我们还进行了活体成像,以研究 IM-T9P1-ASO 在肿瘤中的药代动力学。结果 IM-T9P1-ASO 疗法与 PD-L1 抗体疗法不同,可在多种小鼠癌症模型中产生持久的抗肿瘤反应。从机制上讲,IM-T9P1-ASO 激活了肿瘤相关树突状细胞 (DC) 的状态,本文称为 DC3,它们具有强大的抗肿瘤潜力但表达 PD-L1 检查点。IM-T9P1-ASO 有两个作用:它通过与 TLR9 结合触发 DC3 的扩增并下调 PD-L1,从而释放 DC3 的抗肿瘤功能。这种双重作用导致 T 细胞排斥肿瘤。 IM-T9P1-ASO 的抗肿瘤功效取决于 DC3 产生的抗肿瘤细胞因子白细胞介素 12 (IL-12) 和 DC 发育所需的转录因子 Batf3。结论通过同时靶向 TLR9 和 PD-L1,IM-T9P1-ASO 通过 DC 激活放大抗肿瘤反应,从而在小鼠中产生持续的治疗效果。通过强调小鼠和人类 DC 之间的差异和相似之处,本研究可用于为癌症患者制定类似的治疗策略。
乳腺癌是最常见的恶性肿瘤受影响的女性,但目前的治疗策略对于晚期或转移性疾病的患者仍然有效。在这里,据报道了一种有效治疗转移性乳腺癌的策略。Specifically, a self-assembling dendrimer nanosystem decorated with an antibody against programmed cell death ligand 1 (PD-L1) is established for delivering a small interfering RNA (siRNA) to target 3-phosphoinositide-dependent protein kinase-1 (PDK1), a kinase involved in cancer metabolism and metastasis.该纳米系统(名为PPD)旨在针对PD-L1靶向siRNA的癌症递送以抑制PDK1并调节癌症代谢,同时促进基于程序性细胞死亡1(PD-1)/PD-L1途径的免疫治疗。的确,PPD有效地产生了对PDK1诱导的糖酵解和PD-1/PD-L1途径相关的免疫反应的同时抑制,从而有效抑制了肿瘤生长和转移的肿瘤模型中没有任何明显毒性的毒性。总的来说,这些结果突出了PPD作为对乳腺癌的有效和安全肿瘤靶向疗法的潜在用途。这项研究构成了原理的成功证明,利用了肿瘤微环境和代谢的内在特征,以及独特的自组装树突聚合物平台,以实现在合并和精确癌症治疗中基于SIRNA的基因靶向和基于siRNA的基因沉默。
印度总理纳伦德拉·莫迪今天在布巴内斯瓦尔的“Utkarsh Odisha:2025 年奥里萨邦制造会议”上参观了印度可再生能源发展机构有限公司 (IREDA) 展馆。IREDA 董事长兼董事总经理普拉迪普·库马尔·达斯欢迎总理的到来,并向他介绍了该公司作为印度最大的纯绿色融资 NBFC 的 37 年历史。
沃普克·胡克斯特拉先生参加圆桌会议“企业对缔约方会议的影响:企业如何补充国家”;与荷兰首相迪克·舒夫先生会面;会见沃尔沃汽车公司首席执行官吉姆·罗恩先生;会见荷兰副首相兼气候与绿色增长部长索菲·赫尔曼斯女士;参加圆桌会议“企业对缔约方会议的影响:企业如何补充国家”;会见国际能源署执行干事法提赫·比罗尔先生;会见莱茵集团首席执行官马库斯·克雷伯先生;会见安赛乐米塔尔首席执行官阿迪亚·米塔尔先生;会见瑞士联邦总统兼财政部长卡琳·凯勒-苏特女士;会见拉脱维亚总统埃德加斯·林克维奇斯先生;会见西班牙外交、欧盟和合作部长何塞·曼努埃尔·阿尔瓦雷斯先生;会见智利环境部长梅萨·罗哈斯·科拉迪女士;会见智利外交部长 Alberto van Klaveren 先生;会见 LinkedIn 首席执行官 Ryan Roslansky 先生;参加为 Victor Halberstadt 举行的晚宴和辩论。
hal是一个多学科的开放访问档案,用于存款和传播科学研究文件,无论它们是否已发表。这些文件可能来自法国或国外的教学和研究机构,也可能来自公共或私人研究中心。
>> 拉古·斯里尼瓦斯博士(物理学早期职业研究员):大家好,我叫拉古。我是贝利奥尔学院和物理系的早期职业研究员。我在美国攻读博士学位之前在新加坡长大,然后于 2020 年来到牛津。自 22 年以来,我一直在学院工作,教授本科生量子力学课程。我的研究重点是实验量子物理学,即操纵单电荷原子或离子。例如,我们的一个应用是量子计算,我们正在尝试开发新技术来更精确地操纵这些原子以及存储在这些原子中的信息。因此,你可以将它们视为在原子内存储零和一。但它与传统计算机的不同之处在于,它们不仅仅是零和一,而且它们可以在我们所谓的叠加态中同时为零和一。我们还开发了不使用激光来纠缠这些离子的新技术,这是我攻读博士学位期间的研究重点。由于我的研究范围已经扩展到量子计算之外,扩展到量子传感,我们可以使用这些离子作为时钟来测量频率和时间的微小差异,以及更基本的量子光学。所以,要记住的是,我是一个实验主义者。所以,90% 到 99% 的时间里,有些东西坏了,你只需要修复它。但有 1% 的时间,一切都正常,你正在获取数据,这就像魔术一样。
向大脑给药有多种途径,包括脑实质内注射、脑室内注射和蛛网膜下腔注射。血脑屏障 (BBB) 阻碍了大多数药物渗透和进入中枢神经系统 (CNS),因此许多神经系统疾病仍未得到充分治疗。在过去的几十年里,为了避免这种影响,已经开发出几种纳米载体来将药物输送到大脑。重要的是,鼻腔内 (IN) 给药可以通过鼻腔和大脑之间的解剖连接直接将药物输送到大脑,而无需穿过 BBB。在这方面,树枝状聚合物可能具有通过 IN 给药将药物输送到大脑的巨大潜力,绕过 BBB 并减少全身暴露和副作用,以治疗中枢神经系统疾病。在这篇原创简明评论中,我们重点介绍了一些关于使用树枝状聚合物通过 IN 直接输送中枢神经系统药物的倡导例子。本综述重点介绍了树枝状聚合物包覆药物(例如小分子化合物:氟哌啶醇和丹皮酚;大分子化合物:葡聚糖、胰岛素和降钙素;以及 siRNA)通过 IN 给药的几个例子。观察到了良好的效率。此外,我们将介绍 PAMAM 树枝状聚合物在 IN 给药后的体内效果,整体上没有表现出一般毒性。
如果您想用基因驱动器消除澳大利亚的Agapaddan等入侵物种,则可能有比预期的更大程度地传播该财产的风险。agapaddan在澳大利亚引起了烦恼,但在美国最初来自的美国却不会。如果试图用基因驱动器来消灭澳大利亚的Agapaddan,那将是对基因的灾难,将被带到美国的人口,在那里它可以完全消除该物种。在这种情况下,人们可以“回到”插入的基因,以防止该物种完全消灭。因此,一个基因驱动程序可用于“恢复”或提供另一个新功能,这是一个新的基因驱动程序,以查找原始基因驱动器引入的序列。在这里也可以说,基因驱动器可以通过预期的种类传播到其他物种,或者具有传播的基因驱动因素具有更大的优势(更高的适应性),因此种群可以以难以预测的方式影响生态系统和其他物种。
基因驱动器被引入受精卵,在 Cas9、引导 RNA 和细胞修复系统的帮助下,被插入染色体中的特定位置。经过修改的染色体包含构成基因驱动器的 DNA 序列,并能表达 Cas9 酶和引导 RNA。时间和频率由发起人的选择决定。当被修饰的染色体上的基因表达时,就会导致另一条染色体(在同一染色体对中)在相应的位置被切割。 DNA分子中的两条DNA链都被切断,导致细胞启动复杂的修复过程。包含基因驱动基因(包括所需基因)的修改后的染色体现在充当切割染色体的模板,从而将构成基因驱动基因的基因复制到染色体对中的另一个染色体上。这一过程可与减数分裂过程中发生的交叉过程进行比较。