背景我们最近提供了概念概念,表明使用T细胞使用T细胞的T细胞疗法(TCR) - 基因疗法表达靶向突变体KRAS G12D的TCR可以介导患有泛蛋白癌患者转移性疾病的回归。1然而,其他患者的TCR-Gene治疗没有效率,因此需要增强T细胞活性的策略。在一些接受TCR基因治疗治疗的患者中,工程的T细胞通常会持续存在于患者中,这表明T细胞最终失去了介导耐用肿瘤退化所需的效力。来自共刺激受体的信号可以驱动有效的T细胞反应,但这些信号可能缺失或不足,在肿瘤微环境(TME)中。CD40是在抗原呈递细胞(例如B细胞,DCS和巨噬细胞)表面上发现的有效的成量蛋白,在激活这些细胞类型中起着重要作用,但是T细胞通常不表达CD40,除非激活后短暂地表达CD40。因此,我们假设CD40或CD40嵌合受体的过表达可以提高抗肿瘤T细胞功能时CD40通过激动剂抗CD40抗体(CDX-1140,CellDEX Therapeutics)参与。测试这一点的方法,我们设计了与KRAS G12D反应性TCR共表达的CD40非抗原嵌合受体(NACRS)。我们的CD40 NACR包含融合到跨膜和细胞质结构域的CD40的外元结构域,这些结构域衍生自10个不同的受体家族(例如IL-2R,TLR,TNF等)。但是,包括野生型CD40在内的一些基于CD40的受体在体外有效地增强了肿瘤细胞系的杀死。评估CD40 NACR的功能的结果,我们用抗CD40抗体刺激T细胞,并针对磷酸化-STAT5或效应细胞因子(如IFN-G和TNF)进行了细胞内染色。我们通过与胰腺癌和结直肠癌细胞系共同培养CD40 NACR的体外杀死能力,表达HLA-C*08:02和KRAS G12D。尽管有一些受体的生物化学活性证据,但大多数CD40 NACR并未显着增强T细胞对测试癌细胞系的体外杀伤能力。令人惊讶的是,在没有抗CD40抗体的情况下可以看到其中一些受体的增强效力,这表明内源性CD40L表达可能有助于增加T细胞效应子功能。总体而言,我们的研究强调了CD40基因工程增强收养细胞疗法的潜力。我们的铅基于CD40受体的其他表征正在进行中。
聚合物是各种生物材料,通常应用于抗癌和抗菌剂的组织工程和载体中。有多种化学,生物学,医学和工业应用,用于聚乙烯乙二醇(PEG),一种水溶性聚醚。由PEG组成的聚合药物输送系统由于免疫原性,生物降解性,活性药物靶向和可持续的药物释放特征而具有许多优势。此外,该聚合物已成功地用于为各个身体部位的组织工程制备三维(3D)支架。是增加生物相容性和全身循环时间的关键步骤。此外,刺激性反应性和两亲性药物结合物基于PEG作为自组装的配方,例如胶束增强了细胞内药物的释放。在这篇综述中,我们试图提出并讨论与PEG在抗菌药物携带者和组织工程中的新应用相关的最新进展和挑战。
1 i3S-Health Innovation and Institute在葡萄牙波尔图大学,葡萄牙2-国立国家生物医学工程研究所,波尔图大学,葡萄牙大学3号,健康科学系,自动疾病和过敏性疾病,COAD COAD COAD,DELEMITISTILICER,USCELLI,in UPCELLI,itecelli,intaly intaly,一所州立大学,意大利米兰,5个社区医学,信息与健康决策科学系(MedCIDS),葡萄牙波尔图大学医学院,6 Rise-Health,Permed Research Group,Porto,Porto,Porto,7 Rise-Laboratoration,LT2-Baboratory,lt2-Clibal of PortoIl of Portocial of Portoic of Portoil of Portoil of Portoil of Portocial of Portuc and of Portug of Portoic and of Portug and of Portug and of Portug and of Portial of Portocial of Portoc ,美国俄亥俄州克利夫兰凯斯西部储备大学
摘要 本文介绍的研究探讨了工程专业学生如何认知地管理概念生成,并衡量了可持续性的附加维度对设计认知的影响。12 名一年级工程专业学生和 8 名四年级工程专业学生针对 10 个设计问题提出了解决方案。其中一半的问题包括可持续性的附加维度。我们测量了学生开发的独特设计解决方案的数量及其神经认知激活情况。在没有额外的可持续性要求的情况下,一年级学生提出的解决方案明显多于四年级工程专业学生。一年级学生大脑中通常与认知灵活性以及发散和收敛思维相关的区域皮质激活程度更高。四年级工程专业学生大脑中通常与不确定性处理和自我反省相关的区域皮质激活程度更高。当存在可持续性的附加维度时,一年级学生提出的解决方案较少。四年级工程专业学生提出的解决方案数量相似。四年级工程专业学生需要较少的皮质激活来产生相似数量的解决方案。一年级和四年级工程专业学生的大脑皮层激活模式和解决方案数量各不相同,这开始凸显出学生在设计过程中管理和检索大脑信息方面的认知差异。随着教育的深入,学生管理可持续发展等复杂需求的能力可能会提高。
我是一名有兴趣追求基因工程作为我职业的第11名学生。我想知道进入它所需的百分比,选择哪些主题及其范围。Sandeep891985表明,具有遗传学和数学的生物学是+2以后进行基因工程的必不可少的主题。要在IIT学习,您需要出现IIT JEE并至少获得60%的评分(对于一般/OBC)或55%(对于SC/ST)。基因工程提供了在医疗,制药,农业部门,研究部门和政府/私营部门工作的机会。但是,在这一领域进行更高的研究以取得成功的职业至关重要。其他用户,包括Asahu47,Sushant Roy和Nuzhat Fathima,分享了类似的建议。他们建议在生物学和生命科学等科学等学科中获得超过70%的评分,以获得基因工程资格。基本资格标准包括通过10+2或相关学科或科学或分子生物学学士学位的同等检查。出现在JEE中可以使您有资格,但是确保超过60%(对于一般/OBC)或55%(对于SC/ST)至关重要。稍后才能从事基因工程,您必须是PUC生物学,物理,化学或遗传学的学生。候选人是根据他们在合格考试中获得的优点,总计60%。要加入印度的顶级基因工程学院,您需要清除IIT JEE和AIEEE等入学考试。清除了这些测试后,您可以接受遗传ENGG课程。在两次考试中都有良好的排名至关重要。进行遗传学,您需要对包括数学,生物学,化学和物理学在内的科学学科有强烈的指挥。您必须在10+2中得分高分,然后出现在IIT JEE或AIEEE中,并通过此路线加入田野。具有PCM背景学生的基因工程范围遗传工程的范围对于已将PCM作为选修课的学生可行。资格标准通常要求候选人在12级中学习数学和科学学科。如果某些大学在生物学或其他相关科学方面具有牢固的基础,则可能会考虑没有数学的候选人。为了录取基因工程的本科课程,所需的百分比各不相同。通常,具有PCM背景的学生可以在完成学位后探索不同领域,例如生物技术和医学研究。在完成12年级后,寻找有关从事基因工程职业的信息,并希望了解入学所需的录取百分比。首先,研究PCB(物理,化学和生物学)等学科对对基因工程感兴趣的人有益。但是,值得注意的是,并非所有大学都需要特定的成绩或百分比才能入学。话虽如此,增加了一个人进入顶级大学或大学的机会,在12年级中获得60%以上的成绩通常被视为一个很好的起点。此外,属于预定种姓或预定部落类别的人可能有资格获得较低的百分比要求。选择过程通常涉及基于绩效的考试和入学考试,例如IIT(印度技术研究院)和其他享有声望的机构等JEE(联合入学考试)。还值得一提的是,一些著名的大学认可JEE分数,为候选人提供了更好的机会。在攻读基因工程学位可以导致政府组织的讲师或科学家的职业,但对该领域感兴趣的人应该意识到,研究和教学是毕业后可用的主要途径。希望在完成12年级后追求基因工程,并想知道要为坚强的基础选择哪些主题。通常,需要第12次至少70%的分数,重点是生物学和生命科学。对于那些在数学上挣扎的人来说,基因工程成功的机会可能受到限制。但是,使用生物学,数学和EVM仍然可以为进一步的研究提供范围。那些12年级分数(90%)的人被鼓励考虑从事基因工程。在入学考试方面,建议出现适合所选课程的一个。有些人选择了私营部门的基因工程计划,而另一些人则在完成12年级的PCB后攻读生物技术。但是,对生物技术感兴趣的人可能需要相应地调整其课程选择。可以在完成B.SC学位后研究基因工程,但研究资格标准和所选计划所需的受试者至关重要。基因工程:第12位所需的百分比和学习基因工程职业的学生通常会面临第12标准中所需百分比和要选择的受试者所需百分比的不确定性。一位用户质疑JEE是否对接受基因工程的录取是强制性的,而另一位用户对他们的化学技能表示关注,以阻碍他们追求这一领域。要澄清,根据他们希望申请的大学或机构,学生应在第12次标准考试中至少要获得85-90%的目标。物理,化学和生物学等受试者对于基因工程研究至关重要。入学到AIIMS(A.P.Jeevan Reddy医学科学研究所),学生通常在第12次标准考试中至少需要95-98%。基因工程不仅取决于化学技能,但确实需要在该主题上建立坚实的基础。但是,通过适当的指导和学习材料,学生可以克服自己的弱点并在这一领域表现出色。
使用逆转录病毒或慢病毒载体转导的干细胞或 T 细胞进行体外基因治疗,在治疗免疫缺陷和癌症方面已显示出显著的疗效。然而,这个过程成本高昂,技术难度大,而且不易推广到大量患者群体,特别是在世界欠发达地区。直接体内基因治疗可以避免这些问题,而且在临床试验中,腺相关病毒 (AAV) 载体的这种方法已被证明对影响肝脏和中枢神经系统等分化组织的疾病是安全有效的。然而,在全身给药后用 AAV 在体内转导淋巴细胞的能力尚未得到仔细探索。在这里,我们表明,在小鼠全身给药后,AAV8 载体的标准制剂和外泌体相关制剂都可以有效转导各种免疫细胞群,包括 CD4 + T 细胞、CD8 + T 细胞、B 细胞、巨噬细胞和树突状细胞。我们通过检测 AAV 基因组和转基因 mRNA 提供了 T 细胞转导的直接证据,并表明可以表达细胞内和跨膜蛋白。这些发现确立了 AAV 介导的体内基因递送至免疫细胞的可行性,这将促进基础研究和应用研究,以实现直接体内基因免疫疗法的目标。
我们展示了如何使用场合可编程的门阵列(FPGA)及其协会的高级合成(HLS)编译器来求解具有不完整市场的异质代理模型,并且汇总了不确定性(Krusell和Smith(Krusell和Smith(1998)))。我们记录了一个单个FPGA传递的加速度与在常规群集中使用69个CPU内核提供的加速度相当。解决模型的1200版的时间从8小时下降到7分钟,说明了结构估计的巨大潜力。我们描述了如何实现多个加速机会(二线,数据级并行性和数据精度),并以为传统的顺序专业人员编写的C/C ++代码的最小修改,然后我们在Amazon Web服务中易于使用FPGA。我们量化了这些加速度的加速和成本。我们的论文是迈向新的,电气工程经济学的第一步,重点是设计经济学的综合加速器,以解决具有挑战性的定量模型。复制代码可在GitHub上获得。
能源系统工程是一个跨学科领域,侧重于各种能源技术的设计,分析和优化。这包括发电,发行,存储和消费。目标是以高效,可持续和成本效益的方式生产,交付和使用能量。该领域将电气工程,机械工程和环境科学结合在一起,以解决传统和可再生能源,例如煤炭,天然气,风,太阳能和水力发电。能源系统工程师还考虑能源生产的环境影响,并探索减少碳排放和最小化废物的方法。最终目标是创建可以适应不断变化的能源需求和技术的集成系统。该领域通过设计智能网格,实施储能解决方案和开发创新的能源有效的技术,在向可再生能源的过渡中起关键作用。总而言之,能源系统工程是建立可持续可靠的能源基础设施,在解决环境问题的同时满足现代社会的需求。它需要一种整体方法,将工程原则与环境和经济考虑相结合。能源系统工程师通过促进可再生能源和提高能源效率来抵抗气候变化的作用至关重要。他们负责设计减少碳排放并帮助实现可持续性目标的系统。总的来说,学习这个领域为对环境和社会产生重大影响提供了独特的机会。对这些专业人员的需求正在跨行业增长,从发电和公用事业到制造和运输,提供多种职业机会。能源系统工程还为技术进步提供了一个创新和创造力的平台,使工程师能够探索利用和分发能源的新方法。在能源系统上工作涉及设计能源系统,分析数据,确保遵守环境法规等等。能源系统工程师与电气工程,机械工程和环境科学的专家合作,创建清洁有效的电力网络。他们的日常任务可能涉及检查能量水平,设计发电的新方法以及开发节省能源的尖端技术。这些专业人员使用高级工具来计划和优化能源系统,并可能进行现场工作,检查基础设施并监督建筑项目。他们经常专门研究可再生能源或电池技术等领域。例如,那些专注于太阳能使用日光动力面板的人,而专注于储能设计电池的人。能源系统工程师可以在办公室,实验室或户外工作,这通过提供技术挑战和动手解决问题的机会来增加职业的吸引力。他们还为全球努力做出贡献,以减少气候变化和促进可持续性。该领域对于创新至关重要,因为它解决了与能源生产,分销和消费有关的一些最大挑战。总的来说,作为能源系统工程师的工作是一项充满活力的工作,具有增长和专业化的空间,将技术专业知识与有机会从事在环境和社会方面有形不同的项目。随着技术进步和社会的发展,能源系统工程师必须提出新的解决方案,以满足不断增长的能源需求,同时减少环境影响。他们推动创新的一个领域是开发使用数字技术来监视和控制能量流的智能电网,从而提高效率和灵活性。他们还致力于高级电池技术和其他存储解决方案,以支持可再生能源。这不仅减少了对化石燃料的依赖,还有助于使能源系统更加灵活和可靠。能源系统工程师还通过开发节能技术和整合可再生能源来促进可持续性,这有助于减少碳排放并打击气候变化。他们正在探索使能源系统更具弹性的方法,因此它们可以承受自然灾害和其他破坏。总而言之,能源系统工程对于创新至关重要,因为它为清洁有效的能源未来提供了基础。通过拥抱新技术并专注于可持续性,这些工程师正在改变我们的生产,分发和使用能源的方式。能源系统位于现代社会的核心。经济围绕获得负担得起可靠的能源,气候变化,减少温室气体和能源安全的途径已引起人们的迫切关注。专门从事能源系统的工程师有助于解决这些问题,从事对运输,供暖,制造和照明至关重要的基础设施。随着新技术的出现,它们提高了效率,但也创造了具有独特挑战的复杂系统。多伦多大学工程科学(ENGSCI)计划提供了一名能源系统工程专业的专业,该专业为学生提供了解决能源发电,存储,传输和分销方面的技术问题的技能。课程涵盖了清洁能源,可持续性,热力学,控制系统和电动驱动器等主题,以及环境,公共政策和经济影响。专业旨在为能源部门及其他地区开发专家,从而在多学科课程中提供基本技术培训。学生学会评估不同技术之间的权衡,探索社会背景下的技术方面,研究与保护和可持续发展的联系,并获得与许多能源主题相关的严格基础。课程由来自各个部门的著名教师教授,包括机械和工业工程,电气和计算机工程,化学工程和应用化学。专业是希望从事技术发展,能源公司或政策机构工作的学生的理想选择。随着在多伦多地区建立NRC高级材料研究机构,能源研究人员将有新的机会参与清洁能源研究。攻读研究生学位对于承担更专业的职责至关重要。T的能源系统工程专业的t不仅在加拿大安大略省,而且还满足了这一领域的更多专家的需求。它为毕业生为令人兴奋的职业做准备,并为在技术研究,系统工程或能源政策等领域的未来专业化奠定了坚实的基础。该专业可用哪些领域?该计划以机械,民用,电气,化学,工业工程和材料科学等能源研究和领域的高级知识为驱动的和才华横溢的学生提供了高级知识。尽管前面提到的重点领域是突出的,但学生也可以探索法律,医学,商业和科学计划的学位。这个专业对电气系统有很大的重视,这就是为什么包括许多ECE课程的原因。但是,该课程还通过CHE374,MIE 303,AER 372和CIV401等课程,使学生了解其他工程学科,例如化学,机械,航空航天和土木工程。我们的计划提供了一种国际独特的体验,使学生成为动态领域的能源专家,使他们能够在不同领域之间轻松适应并在该领域内发展。根据个人利益选择第4年的选修课时,我们提供了预先批准的“能源系统选修课”的列表。但是,学生可以根据他们的教育和职业目标来个性化课程。鉴于能源系统的广泛本质,我们鼓励学生在我们批准的清单之外绘制一组强大的选修课。zeb.tate@utoronto.ca替换需要批准,并且必须符合创建连贯和互补课程的某些标准。该专业的一些课程包括:-MIE 303:检查柴油发动机功能和制冷系统设计。-CHE469:探索燃料电池运行和电化学能量转换,包括热力学原理和外部性,例如经济学和系统整合挑战。- CIV401:分析从基本概念到涡轮机选择的风和水力发电工厂背后的工程。-MIE515:涵盖所选替代能源系统的基本原理,当前技术和应用。该程序在各种能源系统中提供了全面的培训,包括太阳能热,光伏,风,波,潮汐能,储存和网格连接。这种独特的知识融合使毕业生能够在学术界,工业和政府之间无缝过渡。认识了我们一些成功的校友,他们继续在波士顿咨询集团,哈奇,IESO,安大略省电力管理局,Shoppers Drug Mart,Toronto Hydro等高级公司工作。有些人甚至与政府机构和咨询公司从事能源政策的职业。此外,许多近期的毕业生已被纳入著名的研究生课程,例如约翰·霍普金斯大学,麻省理工学院,斯坦福大学,UC,UC Berkeley等。
PERSEPHONE 计划的目标是开发生物能源作物基因工程的颠覆性新技术。生物能源提供了国内能源消耗的约 5%,并有可能提供 5-10% 以上的能源。农业还可以通过其他方式彻底改变能源部门,例如为目前从石油中提取的化学品和材料提供前体。但是,如果没有工程工具的变革性进步,生物能源作物可能无法维持其当前的效用,更不用说发挥其潜力了。基因工程是实现美国生物能源潜力和安全的重要战略。PERSEPHONE 计划将开发高性能的生物能源作物工程工具,创造新颖的基因工程模式,并通过支持创新的生物遏制研究来促进采用。具体而言,PERSEPHONE 旨在支持开发工具,这些工具每年可产生至少 1 千万亿能源或减排超过 60 公吨二氧化碳当量 (CO 2 e)。