AMD Xilinx 的全新 Versal 自适应计算加速平台 (ACAP) 是一种 FPGA 架构,将可重构结构与其他片上强化计算资源相结合。AI 引擎就是其中之一,通过以高度矢量化的方式运行,它们提供了大量原始计算,这可能对包括 HPC 模拟在内的一系列工作负载有益。然而,这项技术仍处于早期阶段,尚未证明其可以加速 HPC 代码,缺乏基准测试和最佳实践。本文提供了一份经验报告,探讨了将 Piacsek 和 Williams (PW) 平流方案移植到 Versal ACAP 上,使用该芯片的 AI 引擎来加速计算。平流是一种基于模板的算法,在大气建模中很常见,包括最初开发该方案的几个气象局代码。使用该算法作为载体,我们探索了构建 AI 引擎计算内核的最佳方法,以及如何最好地将 AI 引擎与可编程逻辑连接起来。使用 VCK5000 与 VCK5000 和 Alveo U280 上的非 AI 引擎 FPGA 配置以及 24 核 Xeon Platinum Cascade Lake CPU 和 Nvidia V100 GPU 评估性能,我们发现虽然结构和 AI 引擎之间的通道数量是一个限制,但通过利用 ACAP,我们可以将性能提高一倍与 Alveo U280 相比。
我们想要强调的是,只有当压缩和膨胀冲程以绝热方式进行时,才能获得上述循环在功输出和效率方面的最高性能,正如所述。然而,只有当 λ t 变化非常缓慢时才能满足这一条件,而这反过来会导致发动机的功率输出因循环时间过长而消失。本文的一个主要目标是通过引入 STA 方案来提出一种克服这一困难的方法,以便人们可以在有限的时间内模拟工质的绝热动力学,从而产生有限的功率。此外,我们还将考虑在系统上不施加任何控制的有限时间驱动,这将导致能级之间的非绝热激发,从而导致工质功输出的不可逆损失。
SKF 碳密封设计旨在密封主轴轴承室和油底壳,以实现更高效和更环保的可持续运行。碳面密封和碳圆周密封通过延长使用寿命和提供出色的性能来降低成本,为许多商用和军用发动机设定了质量标准。SKF 升力密封设计在减少热量产生、延长密封寿命、减少发动机油管理系统负荷和最大限度延长机翼时间方面具有明显的性能优势。
摘要:磁传感器广泛应用于航空发动机及其健康管理系统,但由于永磁体随着温度升高会失去磁性,因此很少安装在发动机热段。本文提出并验证了模型和设计方案,旨在提高电感式传感器的性能,用于测量高压压缩机和涡轮机中高温(200-1000°C)运行的叶片的运动。研究了叶片与传感器的相互作用。制作了传感器的原型,并在转速为 7000 rpm 的 RK-4 转子装置上进行了测试,其中传感器头的温度逐渐升高到 1100°C。将传感器信号电平与在室温下运行的相同传感器的信号电平进行了比较。加热的传感器连续工作,产生的输出信号电平不会发生显着变化。此外,一组六个探头通过了 SO-3 涡轮喷气发动机的初始发动机测试。经证实,所提出的电感式传感器设计适用于在 1000°C 以下运行的压缩机和燃气轮机最后阶段的叶片健康监测 (BHM),即使没有专用的冷却系统也是如此。在实际发动机应用中,传感器性能将取决于传感器的安装方式和可用的散热能力。所提出的技术扩展了永磁体的工作温度,并不特定于叶片振动,但可以适用于飞机发动机热段的其他磁测量。
这是航空业连续第二年面临前所未有的局面,航空公司夏季的现金状况将较弱,而冬季将进一步低迷。因此,航空公司将破产,人们应该担心大量发动机进入市场将对全球机队租赁价格产生影响。一位发动机租赁商代表表示,他主要担心的是,超过这个临界点,某些航空公司可能无法生存。“去年,我们比较乐观。疫苗的开发正在推进,但现在,尽管疫苗已经推出,人们还是更加现实,因此也更加谨慎,”他说。他担心的是那些仍处于破产边缘、严重依赖夏季运营的航空公司。如果他们不能在夏季获得相当多的收入,他们将难以生存。去年,当新冠疫情席卷全球航空业时,人们普遍认为,空客 A320neo/波音 737 Max 的订单可能会进一步被取消,这可能会对 CFM56-5B/7B 和 V2500-A5 的租赁需求产生积极影响。订单取消主要是 Max 订单,以及飞机租赁商订单取消。然而,过去一年,CFM56-5B/7B 和 V2500-A5 发动机的需求总体上相对较弱,对发动机租赁商的影响尤其严重。租赁发动机的需求取决于航空公司的机队结构以及运营商如何平衡这些机队。持续的疫情及其对航空业的突然影响显然给运营商带来了一些不确定性。因此,他们的重点一直放在现金管理上。
朋友们,轮到你们被提及了。我很幸运地说有很多。 U 一年级的朋友(Marcelo、Coty、Pato、Rupa、Dani、Manu、Maxi 和 Diego),geo 朋友(Mendo、Pilar、Negra、Jasson、Jipi、Tania、Mati、Fran...。 )、机械师(Javi、Carpa、Sara、Pablo、Rafa、Yani、Matheus、Castro、Pancho、Chopan、Tente、Mrs. Silvia、Carlitos、Fran,...),我在项目中遇到的人风尘和大号,他们从青春期开始就一直在那里(Lucho、Tatan、Violeta、'Chiky'、Diego、Magda、Gastón 和 Joaquin)。昆西·琼斯博士说,只有成为一个好人,才能成为一名优秀的音乐家。我找到了原因并将其扩展到任何职业。亲爱的朋友们,你们让我成为一个更好的人。
再生冷却或倾倒冷却喷嘴是热气体膨胀的关键部件,可实现液体火箭发动机系统的高温和性能。再生冷却通道壁喷嘴是整个推进行业使用的一种设计解决方案,是一种制造带有内部冷却液通道的喷嘴结构的简化方法。通道壁喷嘴 (CWN) 设计的规模和复杂性可能给制造带来挑战,从而延长交货时间并提高成本。其中一些挑战包括:1) 独特且耐高温的材料,2) 在制造和组装过程中对大型零件的严格公差以容纳高压推进剂,3) 薄壁特征以保持足够的壁温,以及 4) 独特的制造工艺操作和复杂的工具。美国国家航空航天局 (NASA) 和美国专业制造供应商正在完善现代制造技术,以降低复杂性并降低与通道壁喷嘴制造技术相关的成本。增材制造 (AM) 是正在评估的通道壁喷嘴关键技术进步之一。推进部件的增材制造大部分集中在激光粉末床熔合 (L-PBF) 上,但目前还无法将其规模化应用于大型喷嘴。NASA 正在开发用于喷嘴的定向能量沉积 (DED) 技术,包括基于电弧的沉积、吹粉沉积和激光丝直接封堵 (LWDC)。目前考虑采用不同的方法来制造喷嘴,并且每种 DED 工艺都提供独特的工艺步骤以实现快速制造。基于电弧和吹粉沉积的技术用于形成 CWN 衬套。正在展示各种材料,包括 Inconel 625、Haynes 230、JBK-75 和 NASA HR-1。吹粉 DED 工艺也正在展示如何在类似材料中通过一次操作形成整体通道喷嘴。LWDC 工艺是一种使用局部激光丝沉积技术封堵衬套内通道并形成结构夹套的方法。除了双金属收尾材料(C-18150 - SS347 和 C-18150 - Inconel 625)外,该工艺还使用了上述相同的材料。NASA 已完成对各种通道壁喷嘴制造技术的工艺开发、材料特性和热火测试。本出版物概述了正在评估的各种通道壁喷嘴制造工艺和材料,包括热火测试的结果。还讨论了与通道壁喷嘴制造相关的未来发展和技术重点领域。
背景:提供实验室测试信息的网站数量正在快速增加,尽管报告资源的准确性有时值得怀疑。本研究的目的是评估 Google 搜索引擎在线可检索信息的质量。方法:以尿液分析、胆固醇和前列腺特异性抗原 (PSA) 作为关键词,查询 Google 搜索引擎。使用 Google Trends,在 5 年内评估用户的搜索趋势(随时间的兴趣)。两位审阅者对前三个或十个检索到的结果进行盲分析,并根据所有者或发布者的类型以及报告的 Web 内容的质量进行分类。结果:对所有三个考虑的测试的兴趣随着时间的推移不断增加。大多数 Web 内容所有者是编辑和/或出版团体(前 3 次和前 10 次点击的平均百分比分别为 35.5% 和 30.0%)。公共和卫生机构以及科学协会的代表性较低。在前 3 次和前 10 次点击中,发现引用来源占网页结果的 26.0% 到 46.7% 不等,而对于胆固醇,60% 的检索到的 Web 内容仅报告了作者的签名。结论:我们的研究结果证实了文献中其他研究的结果,表明在线 Web
空客在汉堡启用新的 A320 结构装配线 树立数字自动化新标准 #Airbus #A320 汉堡,2019 年 10 月 1 日——空客在汉堡启用了高度自动化的 A320 系列飞机机身结构装配线,展示了空客工业生产体系的演变。新工厂特别专注于制造 A321LR 的较长部件,拥有 20 台机器人、一种新的物流概念、激光测量自动定位以及数字数据采集系统。这些将进一步支持空客提高质量和效率的努力,同时为其工业生产体系带来更高的数字化水平。“通过采用一些最新技术和工艺,空客已经开始了在 A320 系列生产中树立新标准的旅程。这条新的机身结构装配线是 A320 系列产能提升的重要推动力。空客首席运营官 Michael Schoellhorn 表示:“提高自动化和机器人水平可以实现更快、更高效的制造,同时保持我们对质量的首要关注。”“鉴于 A320 系列的巨大成功和订单积压,我们正在采取必要措施,确保我们的生产系统能够与我们产品的卓越性相匹配,并能够满足客户对我们单通道飞机的需求。” 他补充道:“我们对汉堡的员工和工厂给予了高度信任和投资。我们现在需要履行对客户的承诺,同时确保整体竞争力。”对于初始段的组装,空客采用了一种模块化、轻型自动化系统,称为“Flextrack”,八个机器人在每个纵向接头上钻孔和沉头 1,100 到 2,400 个孔。在下一个生产步骤中,12 个机器人(每个机器人在七个轴上操作)将机身中段和后段与尾部组合成一个主要部件,每个轨道接头钻孔、沉头、密封和插入 3,000 个铆钉。除了使用机器人外,空客还在材料和零件物流中实施新方法和技术,以优化生产、改善人体工程学并缩短交货时间。这包括物流和生产水平的分离、以需求为导向的材料补给以及自动导引车的使用。汉堡结构装配工厂负责将单个机身外壳连接成段,以及将单个段最终组装到飞机机身。飞机部件在最终交付到法国、德国、中国和美国的总装线之前,会配备电气和机械系统。高效的 A320neo 系列(包括 A321)拥有天空中最宽的单通道客舱,采用了包括新一代发动机和鲨鳍小翼在内的最新技术,从第一天起,这些技术共同节省了 15% 以上的燃油和二氧化碳,到 2020 年将节省 20%,同时噪音降低 50%。迄今为止,A320neo 系列已获得来自 100 多家客户的 6,500 多份订单。
摘要。提出了几种用于小型航空燃气涡轮发动机概念设计阶段的重量计算的新相关回归模型。对获得的重量模型进行了相互比较,并与 Kuz'michev 模型进行了比较。根据获得的结果,得出了关于其可行性和应用范围的结论。新的相关回归模型在输入参数的数量以及预测重量的准确性方面有所不同。在工作过程中,创建了涡扇发动机 (TFE) 的主要数据和热力学参数数据库,该数据库由 92 台推力小于 50 kN 的小型 TFE 组成。根据收集到的统计数据,获得了允许在发动机设计初始阶段计算重量的公式。这些模型计算权重的误差在 10% 到 30% 之间。