摘要:在三十多年来,基于肿瘤选择性治疗实体瘤的渗透性和保留率(EPR)效应的纳米医学已受到了很大的关注。然而,由于肿瘤或栓塞性肿瘤血管,晚期癌症的治疗仍然是一个巨大的挑战,这导致了EPR效应的所谓异质性。我们先前使用一氧化氮供体和其他称为EPR效应增强子的药物来恢复血管中血管中血流受损的方法。在这里,我们表明,两个新型的EPR效应增强剂 - 异端二硝酸盐(ISDN,Nitrol®)和Sildena fi柠檬酸盐 - 将三种大分子分子药物递送至肿瘤:聚(造型(造型(造型))(造型 - co-maleic Acid)(Sma)和cisplatin,smaplatin,smaplatin,smaplatin;聚(N-(2-羟丙基)甲基丙烯酰胺)聚合物共轭锌原磷脂(光动力疗法和成像);和SMA葡萄糖胺 - 偶联的硼酸络合物(硼中子捕获疗法)。我们在患有晚期C26肿瘤的小鼠中测试了这些纳米果。当这些纳米医学与ISDN或Sildena-Fil一起施用时,肿瘤递送,因此阳性治疗结果在直径为15 mm或更多的肿瘤中增加了2至4倍。这些结果证实了使用EPR效应增强子恢复肿瘤血流的基本原理。总而言之,所有测试的EPR效应增强剂均显示出在癌症治疗中应用的巨大潜力。
。CC-BY 4.0国际许可证可永久提供。是作者/资助者,他已授予Medrxiv的许可证,以显示预印本(未通过PEER REVIVE的认证)Preprint Preprint the版权所有此版本,该版本于2025年2月14日发布。 https://doi.org/10.1101/2025.02.13.25322204 doi:medrxiv preprint
约瑟夫·巴克斯特(Joseph S. Andrulis, 9, 10 Hoda Anton-Culver, 11 Natalia N. Antonenkova, 12 Volker Arndt, 13 Kristan J. Aronson, 14 Annelie Augustinsson, 15 Heiko Becher, 16 Matthias W. Beckmann, 17 Sabine Behrens, 18 Javier Benitez, 19, 20 Marina Bermisheva, 21 Natalia V. Bogdanova, 12, 22,23 Stig E. Bojsen,24,25,26 Hermann Brenner,13,27,27,28 Sara Y. Brucker,29 Qiuyin Cai,30 Daniele Campa,18,18,31 Federico Canzian,32 Jose E. Castelao,33 Tsun L. Chan,33 Tsun L. Chan,34,35 Jenny Chand Chan,36 J. Chan J. Chan,J。 Chenevix-Trench,37 Ji-Yeob Choi,38,39,40 Christine L. Clarke,41 NBCS合作者,42,43,44,44,45,46,46,47,47,48,48,50,50,50,51,51,51,51,51,52 Sarah Colonna,53 Don M. Conroy,4 Fergus J. Conroy,4 Fergus J. Couch,54 simne cross,55 s. cocoun cross,55 corm s。玛丽·戴利(Mary B.
规范BRG/BRM相关因子(CBAF)复合物对于在哺乳动物细胞中增强剂的染色质开放至关重要。但是,开放染色质的性质尚不清楚。在这里,我们表明,除了产生无组蛋白的DNA外,CBAF还会产生稳定的半糖体样中核小体颗粒,这些核小体颗粒含有与50-80 bp的DNA相关的四个核心组蛋白。我们的全基因组分析表明,CBAF通过靶向和分裂脆弱的核小体来制造这些颗粒。在小鼠胚胎干细胞中,这些亚核体成为主转录因子OCT4的体内结合底物,而与OCT4 DNA基序的存在无关。在增强子处,与在无组蛋白DNA上占据的区域相比,OCT4 – subnuceosoms相互作用增加了Oct4占用率,并将OCT4结合的基因组间隔放大至一个数量级。我们提出,CBAF依赖性亚核体策划了一种分子机制,该分子机制在其DNA基序以外的染色质开放中发挥了OCT4功能。
a 马赛癌症研究中心 (CRCM)、INSERM U1068、CNRS UMR 7258、Luminy 科学与技术公园、艾克斯-马赛大学和保利-卡尔梅特研究所,法国 b 布宜诺斯艾利斯大学、国家科学技术研究委员会、药理学和植物学研究中心 (CEFYBO)、医学院,布宜诺斯艾利斯,阿根廷 c 布宜诺斯艾利斯大学、医学院、微生物学、寄生虫学和免疫学系,布宜诺斯艾利斯,阿根廷 d 肿瘤身份证计划 (CIT)、法国抗癌联盟,巴黎,法国 e Laboratoire Modal ' X - UMR 9023,巴黎南泰尔大学,法国南泰尔 f 巴黎萨克雷大学、AgroParisTech、INRAE、UMR MIA Paris-Saclay, Palaiseau 91120,法国 g 基因组学和精准医学中心(GSPMC),威斯康星医学院,美国威斯康星州密尔沃基 h 威斯康星医学院外科系研究部,美国威斯康星州密尔沃基 i 雷恩大学,CNRS,INSERM,IGDR(雷恩遗传和发展研究所)- UMR 6290,ERL U1305,雷恩,法国 j 巴黎城大学,炎症研究中心(CRI),INSERM,U1149,CNRS,ERL 8252,巴黎 F-75018,法国 k 埃尔克鲁塞阿尔塔综合医院,Florencio Varela,文学士,阿根廷 l 阿图罗·豪雷切大学,Florencio Varela,文学士,阿根廷
成年肌纤维的收缩特性由其肌球蛋白重链异构体含量决定。在这里,我们通过 snATAC-seq 鉴定出重组快速肌球蛋白基因的位点上有一个 42 kb 的超级增强子。通过 4C-seq,我们发现活性快速肌球蛋白启动子通过 DNA 环路与该超级增强子相互作用,导致每个细胞核中单个启动子的激活。包括超级增强子的位点彩虹小鼠转基因模型重现了成年快速肌球蛋白基因的内源性时空表达。通过 CRISPR/Cas9 编辑原位删除超级增强子表明其在控制相关快速肌球蛋白基因方面发挥了重要作用,而删除位点上的两个快速肌球蛋白基因表明启动子对共享超级增强子存在积极竞争。最后,通过破坏快速肌球蛋白的组织,我们发现肢体骨骼肌内的位置异质性,这可能是某些肌病中选择性肌肉易受损伤的原因。
感染后,人乳头瘤病毒 (HPV) 会操纵宿主细胞基因表达,以创造一个有利于有效和持续感染的环境。病毒诱导的宿主细胞转录组变化被认为是导致致癌的原因。在这里,我们通过 RNA 测序表明,致癌 HPV18 附加体在原代人类包皮角质形成细胞 (HFK) 中的复制会驱动宿主转录变化,这些变化在多个 HFK 供体之间是一致的。我们之前已经表明,HPV18 将宿主蛋白 CTCF 募集到病毒附加体中,以控制分化依赖性病毒转录程序。由于 CTCF 是宿主细胞转录的重要调节器,它通过协调表观遗传边界和长距离染色体相互作用,我们假设 HPV18 也可能操纵 CTCF 来促进宿主转录重编程。通过 ChIP-Seq 分析宿主细胞基因组中的 CTCF 结合情况,结果显示,虽然病毒不会改变 CTCF 结合位点的总数,但是有一部分 CTCF 结合位点要么富集要么缺乏 CTCF。许多这些改变的位点聚集在差异表达基因的调控元件内,包括抑制上皮细胞生长和侵袭的肿瘤抑制基因细胞粘附分子 1 (CADM1)。我们发现 HPV18 的建立会导致 CADM1 启动子和上游增强子处的 CTCF 结合降低。在没有 CpG 高甲基化的情况下,CTCF 结合的丧失与 CADM1 的表观遗传抑制同时发生,而包括转录调节因子 ZBTB16 在内的相邻基因则被激活。这些数据表明,在 HPV18 建立后,CADM1 基因座会发生拓扑重排。我们利用 4C-Seq(环状染色体确认捕获测序)测试了这一假设,并表明 HPV18 的建立导致
发育基因通常由多种具有重叠活性的元件调控。然而,在大多数情况下,这些元件的相对功能及其对内源基因表达的贡献仍未得到很好的表征。这种现象的一个例子是,已经提出了不同的增强子组来指导肢体顶端外胚层脊和中脑-后脑边界中的 Fgf8。利用体内 CRISPR/Cas9 基因组工程,我们从功能上剖析了这个复杂的调控集合,并展示了两种不同的调控逻辑。在顶端外胚层脊中,Fgf8 表达的控制似乎分布在不同的增强子之间。相反,我们发现在中脑-后脑边界中,三个活性增强子中的一个是必需的,而另外两个是可有可无的。我们进一步剖析了必需的中脑-后脑边界增强子,揭示它也是由必需和可有可无的模块混合组成的。该增强子的跨物种转基因分析表明,其组成可能发生在脊椎动物谱系中。
。CC-BY-NC-ND 4.0 国际许可证永久有效。它是在预印本(未经同行评审认证)下提供的,作者/资助者已授予 bioRxiv 许可,可以在该版本中显示预印本。版权持有者于 2025 年 1 月 14 日发布了此版本。;https://doi.org/10.1101/2025.01.14.632548 doi:bioRxiv 预印本
资金信息抗癌联盟(标记为团队);国家研究机构(ANR)——白色项目; AMMICa US23/CNRS UMS3655;癌症研究协会(ARC);法兰西岛癌症中心;医学研究基金会(FRM);埃利尔; Equipex 癌表型筛查;欧洲罕见疾病联合计划(EJPRD);欧洲研究委员会高级研究员奖,资助/奖励编号:ICDCancer,101052444;欧盟地平线 2020 项目肿瘤生物组预评估,资助/奖励编号:101095604;欧盟地平线 2020 项目 Crimson,资助/奖励编号:101016923;国家癌症研究所(INCa);法国大学研究所; LabEx Immuno-Oncology,资助/奖励编号:ANR-18-IDEX-0001;马克基金会癌症研究 ASPIRE 奖; RHU 免疫生命; Seerave 基金会; SIRIC 癌症研究和个性化医疗 (CARPEM)