本演示文稿中讨论的某些事项可能包含有关公司市场机会和业务前景的陈述,这些陈述是个人和集体前瞻性陈述。这种前瞻性陈述不能保证未来的表现,并且会受到难以预测的已知和未知风险,不确定性和假设。这些风险和不确定性包括但不限于印度经济的表现以及各种国际市场的经济,印度和全球行业的绩效,竞争,公司成功地实施其战略的能力,公司的未来增长和扩张水平,技术实施,技术实施,变化,收入和现金范围以及其他风险以及市场的风险以及对市场的风险,以及其他风险,以及其他风险,以及其偏好的风险。公司的实际结果,活动水平,绩效或成就水平可能与本演示文稿所表达或暗示的结果有重大差异。公司没有义务更新本演示文稿中包含的任何前瞻性信息。本演示文稿中包含的第三方做出的任何前瞻性陈述和预测均未由公司采用,公司对此类第三方陈述和预测概不负责。
● 如果有空位,并且学生的成绩及格(60 分或更高),学生将被安排在他们的首选课程中。 ● 如果选择课程作为首选的学生人数超过可用名额,则在探索期间在商店中得分最高的学生将被优先安排。 ● 如果学生在该商店获得相同分数并且可用名额有限,则九周的总平均成绩将成为该名额的决胜因素。 ● 将为未能被安排的学生创建首选候补名单。如果需要,将使用评估分数和总平均成绩创建候补名单。
AI系统经过经常被模型记忆的数据培训(Carlini等,2021)。机器学习模型的行为就像训练数据的有损压缩机一样,这些模型基于深度学习的性能进一步归因于这种行为(Schelter,2020; Tishby&Zaslavsky,2015年)。换句话说,机器学习模型是培训数据的压缩版本。此外,AI模型还容易受到会员推理攻击的影响,这些攻击有助于评估有关某人的数据是否在培训数据集中(Shokri等,2017)。因此,实施擦除和纠正的权利需要通过模型逆转个人数据的记忆。这涉及删除(1)用作培训输入的个人数据,以及(2)训练有素的模型中特定数据点的影响。
摘要背景:磁共振(MR)图像是脑肿瘤检测最重要的诊断工具之一。在医学图像处理问题中,脑 MR 图像中胶质瘤肿瘤区域的分割具有挑战性。精确可靠的分割算法对诊断和治疗计划有很大帮助。方法:本文介绍了一种新颖的脑肿瘤分割方法作为后分割模块,该方法使用主要分割方法的输出作为输入,并使分割性能值更好。该方法是模糊逻辑和细胞自动机(CA)的组合。结果:BraTS 在线数据集已用于实现所提出的方法。在第一步中,将每个像素的强度输入模糊系统以标记每个像素,在第二步中,将每个像素的标签输入模糊 CA 以使分割性能更好。在性能饱和时重复此步骤。第一步的准确率为 85.8%,但使用模糊 CA 后的分割准确率达到 99.8%。结论:实际结果表明,与其他方法相比,我们提出的方法可以显著改善 MRI 图像中的脑肿瘤分割。
征文:教育和教育研究中的人工智能国际研讨会 (AIEER) AIEER 2024 教育和教育研究中的人工智能国际研讨会是第 27 届欧洲人工智能会议 ECAI 2024 [https://www.ecai2024.eu/] 的一部分。本次研讨会定于 2024 年 10 月 19 日至 20 日星期六和星期日举行。 研讨会范围 本次研讨会有两个不同的重点,旨在更广泛地面向教育人工智能领域。 第 1 部分。由社会科学主导的讨论,讨论人工智能应用可能有助于解决的教育中的实际问题。这包括教育和教学人工智能的研究,也包括社会科学、经济学和人文学科,包括所有学科,如教育和教学实际行动、以教育需求为重点的劳动力市场研究、教育史和相关教育文化遗产,以及决策和行为科学观点的信息预测。一方面,我们关注人工智能、教育和社会之间的联系。这包括定量和定性研究、分析教育和劳动力市场数据的数据科学方法、推荐系统的人工智能方法以及数字化学习。另一方面,我们关注如何使用人工智能来突破该领域的界限。这包括开发新方法(包括使用人工智能的方法)、寻找和提供可访问的新数据源、丰富数据等等。在这两种情况下,不同观点之间的沟通和相互理解至关重要,这也是本次研讨会的目标之一。更广泛地说,我们感兴趣的是人工智能方法如何影响教育的所有领域以及企业和劳动力市场。这包括从小学到高等教育的所有教育部门如何受到人工智能方法的影响和对其作出反应的方法。用人工智能方法设计数字化未来为教育提出了几个问题:在最广泛的层面上,立法和规范问题;在公司层面,关于投资决策以及如何保持生产力和劳动力的问题;在个人层面,关于资格以及哪些技能需要应用和可能重新学习的问题。因此,技能和资格是教育和教育研究中人工智能的核心。第 2 部分。关于可以开发哪些人工智能应用程序(以及如何开发)来解决第 1 部分提出的问题的(计算机科学主导)讨论。使用基于人工智能的系统来支持教学或学习已经发展了 40 多年,但近年来,由于 COVID-19 大流行期间电子学习工具的使用增加以及最近生成人工智能的爆炸式增长,其增长显着增加。我们正处于这一领域发展的关键时刻,人工智能专家和教育专家必须携手合作,以在教学过程中最佳地利用这项技术。本次研讨会旨在为展示新提案和反思这一具有如此社会意义的领域的最新技术创造空间。在第一部分中,我们特别关注人工智能的技术方面,重点关注用于内容创建(生成式人工智能)、学生分析(机器学习)、学习分析或教师可解释的人工智能方法的具体技术
为了实现气候目标,未来的能源系统必须严重依赖风能和光伏 (PV) 等可变可再生能源 (VRES)。随着 VRES 份额的增加,灵活性以及不同灵活性选项的智能相互作用等主题变得越来越重要。分析灵活性选项和增强未来能源系统设计的一种方法是使用能源系统建模工具。尽管存在各种可公开访问的模型,但并没有明确的评估来评估这些工具中如何体现灵活性。为了弥补这一差距,本文提取了灵活性表示的关键因素,并引入了灵活性和影响因素的新分类。为了评估当前的建模状况,我们向开放能源建模工具的开发人员发送了一份调查问卷,并使用新推出的开放 ESM 灵活性评估工具 (OpFEl) 进行分析,这是一种开源评估算法,用于评估工具中不同灵活性选项的表示。结果显示,各种不同的工具涵盖了灵活性的大多数方面。可以看出,出现了包括部门耦合元素的趋势。然而,当前模型中仍未充分体现储能和网络类型灵活性以及涉及系统运行的方面,应更详细地纳入其中。没有一个模型能够高度涵盖所有类别的灵活性选项,但通过软耦合将不同模型组合起来可以作为整体灵活性评估的基础。这反过来又可以基于 VRES 对能源系统进行详细评估。
2024 年 12 月 2 日 — 使用 optimum-intel 软件包转换和优化模型 pip install optimum-intel[openvino]。下载并将模型转换为 OpenVINO IR 格式...
摘要 研究:AI 社会认知评估与建模。评估 LLM 中的心智理论及其在心理学中的应用 NLP:LLM IFT、表征学习(对比和三重态损失)、语义聚类、总结 DL:Transformers、MoE、EncDec、RNNs、DPO、LoRA 工具:Python、Pytorch、Deepspeed、AWS Sagemaker、hydra、SQL 管理:建立 ML 团队、职能、策略和 OKR、招聘和指导科学家和实习生以及建立数据和注释合作伙伴关系。
