乌克兰基辅市柳博米拉胡扎拉大街 1 号国立航空大学,邮编 03058 摘要 本文致力于阐述智能航空运输管理系统最佳管理的主要理论规定。为主动系统控制而开发的主观熵最大原理是一个初始假设。主观个人偏好的优化理论是工作假设。基于 Jaynes 的熵最大原理,偏好函数在显式视图中被发现。主观偏好函数熵的条件优化,作为对可用操作多替代方案进行建模的不确定性度量,允许组织一些合理的航空运输系统的管理工作。进行了说明性示例模拟。绘制了必要的图表。关键词 1 熵、偏好、不确定性、航空运输、优化、变化、管理、概念、客观函数。
摘要。用于传播导波的压电超声波传感器可用于检查工程结构中的大面积区域。然而,导波声信号固有的色散和噪声、结构中的多重回波以及缺乏近似或精确的模型,限制了它们作为连续结构健康监测系统的使用。在本文中,研究了在板状结构上随机放置压电传感器网络以检测和定位人为损坏的实现。在厚度为 1.9 毫米的铝薄板上设置了一个以一发一收配置工作的宏纤维复合材料 (MFC) 传感器网络。使用离散小波变换在时间尺度域中分析信号。这项工作有三个目标,即首先使用传感器网络产生的超声波的短时小波熵 (STWE) 开发基于熵分布的损伤指数,其次确定备用宏光纤复合材料 (MFC) 传感器阵列检测人为损伤的性能,第三对收集的信号实施到达时间 (TOA) 算法,以定位人造圆形不连续的损伤。我们的初步测试结果表明,所提出的方法为损伤检测提供了足够的信息,一旦与 TOA 算法相结合,就可以定位损伤。
1. 本文档中提供的电路、软件和其他相关信息的描述仅用于说明半导体产品和应用示例的操作。您对在产品或系统设计中整合或以其他方式使用电路、软件和信息负全部责任。瑞萨电子对于您或第三方因使用这些电路、软件或信息而遭受的任何损失和损害不承担任何责任。2. 瑞萨电子在此明确声明,对于因使用本文档中描述的瑞萨电子产品或技术信息(包括但不限于产品数据、图纸、图表、程序、算法和应用示例)而导致的侵权或涉及第三方专利、版权或其他知识产权的任何其他索赔,瑞萨电子不承担任何担保和责任。3. 瑞萨电子或其他方的任何专利、版权或其他知识产权均未以明示、暗示或其他方式授予许可。 4. 您应负责确定需要从任何第三方获得哪些许可,并在必要时获得此类许可,以便合法进口、出口、制造、销售、使用、分销或以其他方式处置任何包含瑞萨电子产品的产品。 5. 您不得更改、修改、复制或逆向工程任何瑞萨电子产品,无论是全部还是部分。瑞萨电子对因此类更改、修改、复制或逆向工程而导致您或第三方遭受的任何损失或损害不承担任何责任。 6. 瑞萨电子产品根据以下两个质量等级进行分类:“标准”和“高质量”。每种瑞萨电子产品的预期应用取决于产品的质量等级,如下所示。 “标准”:计算机;办公设备;通信设备;测试和测量设备;视听设备;家用电子设备;机床;个人电子设备;工业机器人;等。 “高质量”:运输设备(汽车、火车、轮船等);交通管制(交通信号灯);大型通信设备;关键金融终端系统;安全控制设备;等。除非在瑞萨电子数据表或其他瑞萨电子文件中明确指定为高可靠性产品或适用于恶劣环境的产品,否则瑞萨电子产品并不旨在或被授权用于可能对人类生命或身体伤害构成直接威胁或人身伤害(人工生命支持设备或系统;手术植入;等)或可能造成严重财产损失(空间系统;海底中继器;核电控制系统;飞机控制系统;关键工厂系统;军事装备;等)的产品或系统。瑞萨电子不承担因您或任何第三方使用与瑞萨电子数据表、用户手册或其他瑞萨电子文档不一致的瑞萨电子产品而造成的任何损害或损失的任何责任。7. 任何半导体产品都不是绝对安全的。尽管瑞萨电子硬件或软件产品中可能实施了任何安全措施或功能,但瑞萨电子对任何漏洞或安全漏洞概不负责,包括但不限于未经授权访问或使用瑞萨电子产品或使用瑞萨电子产品的系统。瑞萨电子不保证瑞萨电子产品或使用瑞萨电子产品创建的任何系统不会受到攻击或损坏、攻击、病毒、干扰、黑客攻击、数据丢失或盗窃或其他安全入侵(“漏洞问题”)。瑞萨电子不承担因任何漏洞问题引起或与之相关的任何责任或义务。此外,在适用法律允许的范围内,瑞萨电子不就本文档以及任何相关或随附的软件或硬件提供任何明示或暗示的保证,包括但不限于适销性或适用于特定用途的暗示保证。 8. 使用瑞萨电子产品时,请参考最新的产品信息(数据表、用户手册、应用说明、可靠性手册中的“处理和使用半导体设备的一般注意事项”等),并确保使用条件在瑞萨电子规定的范围内,包括最大额定值、工作电源电压范围、散热特性、安装等。瑞萨电子对因在规定范围之外使用瑞萨电子产品而引起的任何故障、失效或事故不承担任何责任。9. 尽管瑞萨电子致力于提高瑞萨电子产品的质量和可靠性,但半导体产品具有特定的特性,例如以一定的速率发生故障以及在一定的使用条件下发生故障。除非瑞萨电子数据表或其他瑞萨电子文件中指定为高可靠性产品或适用于恶劣环境的产品,否则瑞萨电子产品不采用抗辐射设计。您有责任实施安全措施,以防止瑞萨电子产品发生故障或故障时造成人身伤害、火灾造成的伤害或损害和/或对公众造成危险,例如硬件和软件的安全设计,包括但不限于冗余、火灾控制和故障预防,适当的老化退化处理或任何其他适当措施。由于单独评估微型计算机软件非常困难且不切实际,因此您有责任评估您制造的最终产品或系统的安全性。10. 有关环境问题的详细信息,例如每种瑞萨电子产品的环境兼容性,请联系瑞萨电子销售办事处。您有责任仔细充分地调查规范受控物质的包含或使用的适用法律和法规,包括但不限于欧盟 RoHS 指令,并在遵守所有这些适用法律和法规的情况下使用瑞萨电子产品。瑞萨电子对因您不遵守适用法律和法规而造成的损害或损失不承担任何责任。11. 瑞萨电子产品和技术不得用于或纳入任何适用的国内外法律或法规禁止制造、使用或销售的产品或系统。您应遵守对当事方或交易拥有管辖权的任何国家的政府颁布和实施的任何适用的出口管制法律和法规。 12. 瑞萨电子产品的购买者或分销商,或分销、处置或以其他方式向第三方销售或转让产品的其他任何一方,有责任提前通知该第三方本文件中规定的内容和条件。 13. 未经瑞萨电子事先书面同意,不得以任何形式全部或部分转载、复制或复印本文件。 14. 如果您对本文件或瑞萨电子产品中包含的信息有任何疑问,请联系瑞萨电子销售办事处。或销售任何适用的国内外法律或法规均禁止。您应遵守对当事方或交易拥有管辖权的任何国家的政府颁布和实施的任何适用的出口管制法律和法规。12. 瑞萨电子产品的购买者或分销商,或任何分销、处置或以其他方式销售或转让产品给第三方的其他方,有责任提前通知该第三方本文件中规定的内容和条件。13. 未经瑞萨电子事先书面同意,不得以任何形式全部或部分转载、复制或复印本文件。14. 如果您对本文件或瑞萨电子产品中包含的信息有任何疑问,请联系瑞萨电子销售办事处。或销售任何适用的国内外法律或法规均禁止。您应遵守对当事方或交易拥有管辖权的任何国家的政府颁布和实施的任何适用的出口管制法律和法规。12. 瑞萨电子产品的购买者或分销商,或任何分销、处置或以其他方式销售或转让产品给第三方的其他方,有责任提前通知该第三方本文件中规定的内容和条件。13. 未经瑞萨电子事先书面同意,不得以任何形式全部或部分转载、复制或复印本文件。14. 如果您对本文件或瑞萨电子产品中包含的信息有任何疑问,请联系瑞萨电子销售办事处。
摘要:背景:分析在多序列比对中等效位置上发现的氨基酸类型分布已应用于人类遗传学、蛋白质工程、药物设计、蛋白质结构预测和许多其他领域。这些分析往往围绕在进化等效位置上发现的二十种氨基酸类型的分布测量:多序列比对中的列。常用的测量方法是变异性、平均疏水性或香农熵。其中一种称为熵-变异性分析的技术,顾名思义,将一列中观察到的残基类型的分布简化为两个数字:香农熵和由观察到的残基类型数量定义的变异性。结果:我们应用了一种深度学习、无监督特征提取方法来分析所有人类蛋白质的多序列比对。对 27,835 个人类蛋白质多序列比对训练了自动编码器神经架构,以获得最能描述七百万种变异模式的两个特征。这两个无监督学习的特征与熵和变异性非常相似,表明这些是在降低多序列比对中列中隐藏信息的维数时保留最多信息的投影。
本专著使用克劳德·香农 (Claude Shannon) 等人开发的信息理论来分析会计。在以下两种情况下可以推导出三向框架等价性:(i) 当状态可观测时;(ii) 当状态不可观测且只有信号可观测时,信号报告的状态有误。该等价性建立了会计数字、公司回报率和公司可用信息量的相等性,其中香农熵是信息度量。推导状态可观测等价性的主要假设是恒定的相对风险规避偏好、无套利价格和几何平均会计估值。状态不可观测性使用量子公理建模,因此使用量子概率;状态不可观测的方式与量子对象不可观测的方式相同。状态可观测等价性被视为状态不可观测等价性的特例。
大脑如何发展成为如此复杂,它们的未来是什么?大脑构成了一个解释性的挑战,因为熵随着时间的流逝而不可避免地增加,通常与无序和简单性有关。最近我们展示了进化过程是一个熵过程,建筑结构(生物体)本身促进了熵的生长。在这里,我们建议进化中的关键过渡点扩展了生物的覆盖范围,从而开放了一个复杂多维状态空间的新区域,该区域也允许熵增加。大脑演化启用了空间和时间的表示,这极大地增强了这一过程。其中一些通道导致状态空间中的微小,死端:因此,复杂寿命的持久性无法在热中保证。
2023 年 9 月 21 日 摘要。通过参考与共轭可观测量相关的联合熵,证明了兰道尔原理的一种限制形式对热系统成立,与计算考虑无关。结果表明,不可逆物理过程的补偿熵的来源是由于这种相互不相容的可观测量值的本体论不确定性,而不是由于信息论方法中传统假设的认识论不确定性。特别是,明确表明通过重置操作擦除逻辑(认识论)信息并不等同于擦除热力学熵,因此物理学不支持传统的信息论形式的兰道尔原理。分析的另一个含义是现实世界中没有麦克斯韦妖。关键词:兰道尔原理、热力学、量子信息、熵 1. 简介。兰道尔原理 (LP) 最初是由兰道尔从计算的角度提出的。具体来说,兰道尔 (1961) 提出,从事逻辑上不可逆步骤的“计算机器”每一步的成本约为 kT。虽然 LP 已被广泛接受,但仍有少数人持不同意见(例如 Earman 和 Norton 1999;Norton 2005-2018;Hemmo 和 Shenker 2021)。虽然本文作者与反对者一起对兰道尔原始提议中固有的物理不可逆性与逻辑/计算不可逆性的认定提出异议,但我们仍然为 LP 的受限形式提出了物理基础:它不与计算相联系,而是与一类更窄的真正不可逆的物理过程相联系。如果测量是一个物理上不可逆的过程,人们可能会认为这是西拉德原理的一种形式;本研究表明它确实如此。在提出这一观点时,我们希望提请大家注意认识论和本体论不确定性(或“信息”)之间的关键区别,这一区别在热力学和第二定律的讨论中往往被忽略。我们注意到,正如经典统计力学所假设的那样,认识论不确定性可以说无法非循环地产生第二定律或兰道尔原理(参见 Kastner 2017),而本体论不确定性对于两者的成立都是必要的。这一考虑意味着 LP 的受限形式,它不依赖于传统上假设的认识论不确定性。从本质上讲,LP 确实是
摘要:当从希尔伯特空间均匀随机地抽取量子纯态时,该状态通常是高度纠缠的。随机状态的这种特性被称为量子态的一般纠缠,长期以来一直从黑洞科学到量子信息科学等多个角度对其进行研究。在本文中,我们探讨了量子态的对称性如何改变一般纠缠的性质。更具体地说,我们研究从给定对称性的不变子空间均匀随机抽取的量子态的二分纠缠熵。我们首先将众所周知的浓度公式扩展到适用于任何子空间的公式,然后表明:1. 与轴对称相关的子空间中的量子态仍然高度纠缠,尽管它比没有对称性的量子态的纠缠程度要低;2. 与置换对称相关的量子态的纠缠程度明显较低;3. 具有平移对称性的量子态与一般量子态一样纠缠。我们还用数字方式研究了一般纠缠分布的相变行为,这表明即使随机状态具有对称性,相变似乎仍然存在。
一个用于 S α ( ρ ) 的量子估计器,当 0 < α < 1 时,时间复杂度为 e O ( N 4 /α − 2 ),当 α > 1 时,时间复杂度为 e O ( N 4 − 2 /α ),改进了之前由 Acharya、Issa、Shende 和 Wagner (2020) 提出的用于 0 < α < 1 时的最佳时间复杂度 e O ( N 6 /α ) 和用于 α > 1 时的最佳时间复杂度 e O ( N 6 ),尽管样本复杂度会略有增加。此外,这些估计器可以自然扩展到低秩情况。我们还提供了用于估计 S α ( ρ ) 的样本下限 Ω(max { N/ε, N 1 /α − 1 /ε 1 /α })。从技术上讲,我们的方法与以前基于弱 Schur 采样和杨氏图的方法有很大不同。我们构建的核心是一种名为 samplizer 的新工具,它可以仅使用量子态样本将量子查询算法“采样”为具有类似行为的量子算法;这表明了一个估计量子熵的统一框架。具体来说,当量子预言机 U 对混合量子态 ρ 进行块编码时,任何使用 Q 个 U 查询的量子查询算法都可以使用 e Θ ( Q 2 /δ ) 个 ρ 样本采样为 δ 接近(在钻石范数中)的量子算法。此外,这种采样被证明是最优的,最多可达多对数因子。
摘要 众所周知,量子态的 Wigner 函数可以取负值,因此它不能被视为真正的概率密度。在本文中,我们研究了在相空间中寻找扩展到负 Wigner 函数的熵类函数的难度,然后主张定义与任何 Wigner 函数相关的复值熵的优点。这个量,我们称之为复 Wigner 熵,是通过在复平面上对 Wigner 函数的 Shannon 微分熵的解析延拓来定义的。我们表明,复 Wigner 熵具有有趣的特性,特别是它的实部和虚部在高斯幺正(相空间中的位移、旋转和压缩)下都是不变的。当考虑高斯卷积下 Wigner 函数的演化时,它的实部在物理上是相关的,而它的虚部仅与 Wigner 函数的负体积成正比。最后,我们定义任何维格纳函数的复值费希尔信息,当状态经历高斯加性噪声时,它与复维格纳熵的时间导数相关联(通过扩展的德布鲁因恒等式)。总的来说,预计复平面将为分析相空间中准概率分布的熵特性提供一个适当的框架。