抽象的微生物在各种多孔环境中(从土壤和河床再到人类肺部和癌症组织)繁衍生息,涵盖了多个尺度和条件。局部因素的短期到长期波动会诱导时空异质性,通常会导致生理压力的环境。微生物如何反应和适应这种生物物理约束是一个积极的研究领域,在过去的几十年中,已经获得了相当大的洞察力。以细菌为重点,我们在这里回顾了无机和有机多孔环境中自组织和分散的最新进展,强调了主动相互作用和反馈的作用,从而介导了微生物生存和适应性。我们讨论了使用综合方法来提高我们对微生物在各种规模上采用的生物物理策略的理解以使多孔环境可居住的开放问题和机会。
摘要森林是多重时间性的区域。它们记录时间,并通过计时实践构成。环境监测和管理的数字技术越来越多地组织森林的时间性。本文探讨了新兴的技术时间性如何测量、调整和改变森林世界,同时再现和重新配置殖民和资本主义技术的更长持续时间。我们汇集了关于政治森林、数字媒体时间性以及反殖民和土著思想的学术研究,以分析通过数字技术实现的时间政治,并塑造森林的过去、现在和未来是可感知和可能的。特别是,我们追踪“实时”的社会技术生产,将其作为体验、了解和治理森林环境的时间记录。通过分析亚马逊地区的实时森林砍伐警报系统,我们思考了这些时间性如何使即时、连续的森林数据变得有价值,这些数据可用于了解和保护森林,同时又掩盖了依赖于剥夺、开采和圈地的长期殖民主义和资本主义森林框架。本文的后半部分转向土著未来主义以及重新塑造森林时间性的数字平台的艺术和社会政治用途。通过分析这些多重且有时相互矛盾的时间性,我们认为这些实践和干预措施可以通过时间性、土地和数据主权的多元化和再分配配置来挑战主流时间线及其不平等。
。CC-BY-NC-ND 4.0 国际许可证(未经同行评审认证)是作者/资助者,他已授予 bioRxiv 永久展示预印本的许可。
抽象的蛇机器人由于其特殊的身体和步态而变得富裕。但是,由于其复杂的模型,很难计划在多孔环境中进行运动。为了解决这个问题,这项工作研究了一种基于学习的运动计划方法。为可行的路径计划,并提出了一种修改的深Q学习算法,提出了一种弗洛伊德移动的平均算法,以确保蛇机器人通过的路径的平稳性和适应性。一种改进的路径积分算法用于解决步态参数以控制蛇机器人以沿计划的路径移动。为加快参数的训练,设计了一种结合串行训练,并行培训和经验重播模块的策略。此外,我们设计了一个运动计划框架,包括路径计划,路径平滑和运动计划。进行了各种模拟,以验证所提出的算法的效果。
Alexander Dema 1,2,3,RababA。Alexander Dema 1,2,3,RababA。
为了促进我们所有站点的福祉和生物多样性,我们一直在鼓励在所有仓库开发花园。我们目前在我们的10个网站上有花园,第一个是在我们的Castleford Depot上,该仓库在其他网站上充当了灵感。我们想鼓励在所有仓库中引入花园,原因有几个。我们认为这将是激励同事共同努力花园思想和实际创造的好方法。我们还希望确保每个仓库在休息期间都有一个娱乐区供工作人员使用。众所周知,在绿色空间中,对精神健康是有益的,因此我们可以采取的措施来鼓励这始终是有益的。
机器人学科正在探索用于多发性硬化症 (MS) 上肢康复的精确而通用的解决方案。多发性硬化症患者可以从机器人系统中受益匪浅,这有助于对抗这种疾病的复杂性,这种疾病可能会损害他们执行日常生活活动 (ADL) 的能力。为了展示智能机电设备在上述临床领域的潜力和局限性,本综述旨在提出一个简明的 SWOT(优势、劣势、机会和威胁)分析,以分析多发性硬化症中的机器人康复。通过 SWOT 分析(一种主要在企业管理中采用的方法),本文探讨了可能促进或阻碍多发性硬化症上肢康复机器人采用的内部和外部因素。随后,本文讨论了与另一类交互技术(虚拟和增强环境的基础系统)的协同作用如何增强优势、克服劣势、扩大机会并处理多发性硬化症康复机器人中的威胁。这些数字化环境的强大适应性(广泛用于 MS 康复,甚至可以在安全的模拟环境中完成类似 ADL 的任务)是提出这种方法以应对上述 SWOT 分析的关键问题的主要原因。该方法论提案旨在为制定进一步的协同战略铺平道路,这些战略基于医疗机器人设备与其他有前景的技术的整合,以帮助 MS 的上肢功能恢复。
建筑环境的微生物组包括与人造结构相关的细菌,古细菌,真菌和病毒群落。尽管大多数这些微生物都是良性,但抗生素耐药的病原体可以在室内定植并出现,从而通过表面传播或吸入产生感染风险。几项研究已经在不同的环境类型中分类了微生物组成和生态。这些已告知体外研究,试图复制促进致病性生存和传播的物理化学特征,最终促进了用于减少病原体积累的干预技术的发展和验证。这种干预措施包括在表面上使用基于芽孢杆菌的清洁产品或将杆菌整合到可打印材料中。尽管这项工作仍处于起步阶段,但早期的研究表明,有可能使用微生物生物防治来减少医院和家庭获得的多药耐药感染。尽管这些技术有希望,但迫切需要更好地了解建筑环境的微生物生态,并确定这些生物控制溶液如何改变物种相互作用。本评论涵盖了我们当前对建筑环境微生物生态学的理解,并提出了将知识转化为有效的抗生素耐药病原体生物防治的策略。
。CC-BY-NC-ND 4.0 国际许可证下可用(未经同行评审认证)是作者/资助者,他已授予 bioRxiv 永久展示预印本的许可。它是此预印本的版权持有者此版本于 2024 年 1 月 15 日发布。;https://doi.org/10.1101/2024.01.12.575453 doi:bioRxiv 预印本