动力学是对反应速率的研究。 Study of enzyme kinetics is useful for measuring concentration of an enzyme in a mixture (by its catalytic activity), its purity (specific activity), measurement of the catalytic efficiency and/or the specificity of an enzyme, comparison of different forms of the same enzyme in different tissues or organisms, effects of inhibitors (which can give information about catalytic mechanism, structure of active site, potential治疗剂...)通过Michaelis-Menten方程来描述许多酶的速度对[底物]的依赖性。动力学参数:
a. [S] = K m b. [S] >> K m c. [S] << K m 7. 数据收集和处理 a. Lineweaver-Burk;双倒数;1/v 0 vs. 1/[S] b. Eadie-Hofstee;v 0 vs. v 0 /[S] c. Hanes-Woolf;[S]/v 0 vs. 1/[S] 8. 抑制 a. 不可逆:蛋白质修饰 b. 可逆 A. 竞争性;与底物相同;K m 受 (1 + [ I ]/ KI ) = a 的影响 B. 非竞争性;仅与 ES 结合;K m 和 V max 受到相反的影响 C. 非竞争性;与 E 和 ES 同时结合(混合、不平等结合);V max 受到影响 D. 如果 I 与 E 的结合方式与与 ES 的结合方式不同,则为混合抑制
本文讨论了乳糖酶在各种情况下的作用、可产生乳糖酶的微生物来源、乳糖酶发酵中使用的底物类型、有效的发酵策略以及乳糖酶的工业应用。细菌、酵母和真菌用于生产乳糖酶,乳糖酶是一种分解牛奶中乳糖的酶,本文探讨了稻草和橘皮等非常规底物,展示了它们在经济高效的酶生产中的潜力。本文解释了不同的发酵策略,包括深层发酵和固态发酵,强调了它们在最大化乳糖酶产量方面的有效性。纯化和提取技术对于提高酶的纯度和效率也很重要。乳糖酶用于各种工业应用,包括牛奶中的乳糖水解、半乳寡糖的产生以及乳糖不耐症的治疗。乳糖酶在食品和制药行业具有众多优势,固定化技术和基因工程的进步可以显著提高酶的生产效率。
菲律宾大学菲律宾分子生物学与生物技术研究所弗朗西斯科(Francisco Elegado)研究教授12,菲律宾协会(Phillippines)。西迪·艾莎(Siti Aishah)博士一直是化学科学的微笑,科学技术学院,马来西亚Kebangsaan大学。合作。越南VNU科学大学酶和蛋白质技术国家关键实验室副总监Tran van Tuan博士。 Mahabubur Rahman Talukder首席科学家和生物催化团队的团队负责人领导新加坡食品与生物技术创新研究所越南VNU科学大学酶和蛋白质技术国家关键实验室副总监Tran van Tuan博士。Mahabubur Rahman Talukder首席科学家和生物催化团队的团队负责人领导新加坡食品与生物技术创新研究所
在某些非生理条件下,在生物技术过程中使用酶的一般局限性是两个关键量,酶活性和稳定性之间的复杂相互作用,其中一种的增加通常与另一个关键的减少有关。确切的稳定性交易是为了使酶具有完全功能,但是其不同的蛋白质区域的重量及其对环境条件的依赖性尚未阐明。为了促进此问题,我们使用了我们最近开发的形式主义来有效地识别蛋白质结构中的稳定性和弱点区域,并将其应用于具有已知的实验结构和催化位点的大型球状酶。我们的分析表明,以催化区为中心的自由能补偿的惊人振荡模式。的确,相对于稳定性,催化残基通常不是最佳的,但是催化位点周围第一个壳的残基平均是稳定性强度,因此对于这种缺乏稳定性而言。第二壳中的残留物再次较弱,依此类推。在所有酶家族中,这种趋势都是一致的。它伴随着类似但不太明显的残留物保守模式,跨进化。此外,我们分别分析了冷和热适应的酶,并强调了稳定强度和劣势的不同模式,这些模式可洞悉催化速率在冷环境中的长期概率。通过深诱变扫描获得的我们的稳定性和保护结果与实验性数据的成功比较,使我们提出了改善催化活性的标准,同时保持酶稳定性,这是酶设计的关键目标。