优化酶在新型化学环境中起作用是合成生物学具有广泛应用的核心目标。在这项工作中,我们通过使用机器学习(ML)从超高通知功能屏幕中融合进化信息和实验数据来开发一种技术,用于设计蛋白质变体的活跃和多样化的蛋白质变体库。我们在多轮运动中验证了我们的方法,以优化NUCB的活性,nucB的活性,核酸酶酶在慢性伤口的治疗中应用。我们将我们的ML引导运动与维特罗定向进化(DE)和尼里科(Silico In-Silico)命中重组(HR)的平行运动进行了比较。ML引导的运动发现了数百种高度活跃的变体,最多有19倍的核酸酶活性改善,表现优于DE发现的12倍改进,并且在命中率和多样性方面表现出色。我们还表明,仅在进化数据上训练的模型而无需访问任何实验数据,就可以比传统的初始图书馆生成方法以明显高的速率设计功能变体。为了推动ML引导酶设计的未来进展,我们策划了一个55K多种变体的数据集,这是迄今为止最广泛的基因型 - 表型酶活性景观之一。数据和代码可在以下网址提供:https://github.com/google-deepmind/nuclease_design。
对单分子水平的蛋白质的分析发现了在合奏平均技术中掩盖的异质行为。传统上,酶的数字定量涉及通过促荧光底物的转化将单个分子划分为微室的单分子的观察和计数。基于线性信号扩增的策略仅限于几种酶,其周转率足够高。在这里我们表明,通过将指数分子放大器的敏感性与DNA-酶电路的模块化和液滴读数结合,允许在单分子水平上特异性检测几乎任何D(R)NA与NA相关的酶促活性。该策略(表示为数字PUMA)已通过十几种不同的酶进行了验证,其中包括许多催化速率缓慢的酶,并降低到Pyogenes cas9的明显单周转极限。数字计数独特地产生绝对摩尔定量,并在所有经过测试的商业制剂中揭示了很大一部分非活性催化剂。通过实时监测单个酶分子的扩增反应,我们还提取了催化剂种群中活性的分布,从而揭示了各种应力下的替代失活途径。我们的方法极大地扩大了可以从单分子分辨率下的定量和功能分析中受益的酶的数量。我们预计数字puma将作为一种多功能框架,用于在诊断或生物技术应用中进行准确的酶定量。这些数字测定也可以用于研究蛋白质功能异质性的起源。
françoisestanke-labesque,elodie gautier-vevenret,斯蒂芬妮·乔恩(Stephanie Chhun),罗曼·吉尔豪穆(Romain Guilhaumou)。燃料是药物代谢酶和转运蛋白的主要调节剂:药物治疗个性化的后果。药理学和治疗学,2020,215,pp.107627。10.1016/j.pharmthera.2020.107627。hal-03598618
唐氏综合症(DS),最常见的染色体畸变,是由于存在额外的21染色体副本而产生的。过表达的基因鉴定DS中有助于智力障碍(ID)对于了解所涉及的病理生理机制并发展新的药理疗法很重要。特别是,双重特异性酪氨酸磷酸化的基因剂量调节激酶1a(DYRK1A)和胱胱氨酰胺β合酶(CBS)的基因剂量对于认知功能至关重要。由于这两种酶最近是对ID治疗研究的主要靶标,因此我们试图破译它们之间的遗传关系。我们还使用过表达Cys4的细胞模型(酿酒酵母中CBS的同源物)结合了遗传和药物筛查,以进一步了解参与CBS活性调节的分子机制。我们表明,Yak1的过表达是酵母中dyRK1a的同源物,增加了Cys4活性,而GSK3β被鉴定为CBS的遗传抑制因子。此外,对通过基于酵母的药理筛查鉴定的药物靶向的信号通路的分析,并使用人HEPG2细胞确认,强调了AKT/GSK3β和NF-κB途径在CBS活性和表达调节中的重要性。综上所述,这些数据提供了对CBS的调节,尤其是通过AKT/GSK3β和NF-κB途径的DYRK1A和CBS之间的遗传关系,这应该有助于开发更有效的疗法,以减少DS患者的认知延迟。
设计酶以在新型化学环境中起作用是合成生物学具有广泛应用的核心目标。在这项工作中,我们描述了一项由机器学习(ML)引导的运动,以设计核酸酶NucB,核酸核酸核酸hut(一种酶)在治疗慢性伤口时应用。在多轮酶演化运动中,我们将超高通量功能筛选与ML相结合,并将其与维特罗定向进化(DE)的平行运动(DE)和硅内命中率重组(HR)进行了比较。ML引导的运动发现了数百种高度活跃的变体,最多有19倍的核酸酶活性改善,表现优于DE发现的12倍改进。此外,ML设计的命中率距离NUCB WildType高达15个突变,在命中率和多样性方面远远超过了HR方法。我们还表明,仅在进化数据上训练的模型而无需访问任何实验数据,就可以比传统的初始图书馆生成方法以明显高的速率设计功能变体。为了推动ML引导设计的未来进展,我们策划了一个55K多种变体的数据集,这是迄今为止最广泛的基因型 - 表型酶活性景观之一。数据和代码可在以下网址提供:https://github.com/google-deepmind/nuclease_design。
设计酶以在新型化学环境中起作用是合成生物学具有广泛应用的核心目标。使用机器学习(ML)引导蛋白质设计有可能通过精确导航坚固的健身景观来加速发现高性能酶。在这项工作中,我们描述了ML引导的运动,以设计Nuclease NucB,该核定是一种酶,该酶在治疗慢性伤口的酶降解生物膜,以治疗慢性伤口。在多发酶演化活动中,我们将超高通量功能筛选与ML相结合,并将其与平行的电脑内定向进化(DE)和硅内命中重组(HR)策略进行了比较。ML引导的运动发现了数百种高度活跃的变体,最多有19倍的核酸酶活性改善,而DE的最佳变体提高了12倍。此外,ML设计的命中率距离NUCB WildType高达15个突变,在命中率和多样性方面远远超过了HR方法。我们还表明,仅在进化数据上训练的模型而无需访问任何实验数据,就可以比传统的初始图书馆生成方法以明显高的速率设计功能变体。为了推动ML引导设计的未来进展,我们策划了一个55K多种变体的数据集,这是迄今为止最广泛的基因型 - 表型酶活性景观之一。数据和代码可在以下网址提供:https://github.com/google-deepmind/nuclease_design。
sephin1被发现为蛋白质磷酸酶抑制剂,其对神经退行性疾病的有效性已得到证实。有关于用蛋白质磷酸酶1调节亚基15 a抑制pp1全酶对EIF2α去磷酸化的抑制作用的报道。在本研究中,我们发现Sephin1在用衣霉素施用的ER应激模型中显着抑制了肾小管细胞死亡。CHOP在ER应力诱导的细胞死亡途径中起着核心作用,需要核易位作为转录因子,以增加与细胞死亡相关基因的表达。sephin1明显抑制了CHOP的核易位。为了阐明Sephin1细胞死亡抑制作用的分子机制,我们使用了与衣霉素的ER应激下的人类肾小管上皮细胞。sephin1通过在Ser30处促进磷酸化来降低细胞内切碎水平,从而导致UPS蛋白质降解。磷酸化的CHOP是由Thr172磷酸化活化的AMPK产生的,而Sephin1增加了磷酸化的AMPK。磷酸化的AMPK被PP2A通过其THR172的去磷酸化而灭活,而Sephin1抑制了PP2A Holoenzyme与PP2A亚基B同工型的形成。这些结果表明,在该实验系统中,抑制PP2A全酶形成是Sephin1的分子靶标。
摘要核酸ADP-核糖基化及其在催化和水解中的杂化酶在生命的所有王国中都普遍存在。然而,目前不Xpleder Xpled ,其在哺乳动物和细菌pH y生物学中的作用包括 - 植物间冲突。 R ecently, se v eral e xamples of enzymatic sy stems f or RNA ADP-ribosylation ha v e been identified, sho wing that all major types of RNA species, including messenger RNA, ribosomal RNA, and transfer RNA, can be targeted by ADP -ribosyltransf erases (ARTs) whic h at tac h ADP-ribose modifications either to nucle- obases, the backbone核糖或磷酸盐末端。 对于属于宏观域,ARH或Nadar Superf Amilies的RNA ADP-核糖基化的可抗性知之甚少。 在这里,我们表征了ADP-核糖基y drolase对RNA物种ADP-核糖基化的drolytic活性。 我们证明了Nadar ADP-核糖基Y drolase是唯一能够在磷酸末端RNA ADP-核糖基上不活跃的同时,唯一能够对鸟氨酸RNA RNA碱基ADP-核糖基化。 此外,我们揭示了含宏域的PARG酶是唯一具有具有2'-H y DRO Xyl Xyl Xyl Xyl Xyl Xyl Xyl rNA ADP-核糖基催化催化催化sed b y pseudomonAsAsAsAsuginosa效应的特定和有效性的Drolase类型。 moreo ver,使用Rhsp2 /细菌作为e茎,我们证明了par g酶可以作为对抗Xins抗菌RNA-T的保护性免疫酶的作用。,其在哺乳动物和细菌pH y生物学中的作用包括 - 植物间冲突。R ecently, se v eral e xamples of enzymatic sy stems f or RNA ADP-ribosylation ha v e been identified, sho wing that all major types of RNA species, including messenger RNA, ribosomal RNA, and transfer RNA, can be targeted by ADP -ribosyltransf erases (ARTs) whic h at tac h ADP-ribose modifications either to nucle- obases, the backbone核糖或磷酸盐末端。对于属于宏观域,ARH或Nadar Superf Amilies的RNA ADP-核糖基化的可抗性知之甚少。在这里,我们表征了ADP-核糖基y drolase对RNA物种ADP-核糖基化的drolytic活性。我们证明了Nadar ADP-核糖基Y drolase是唯一能够在磷酸末端RNA ADP-核糖基上不活跃的同时,唯一能够对鸟氨酸RNA RNA碱基ADP-核糖基化。此外,我们揭示了含宏域的PARG酶是唯一具有具有2'-H y DRO Xyl Xyl Xyl Xyl Xyl Xyl Xyl rNA ADP-核糖基催化催化催化sed b y pseudomonAsAsAsAsuginosa效应的特定和有效性的Drolase类型。moreo ver,使用Rhsp2 /细菌作为e茎,我们证明了par g酶可以作为对抗Xins抗菌RNA-T的保护性免疫酶的作用。
1 加州大学伯克利分校分子与细胞生物学系;美国加利福尼亚州伯克利市;2 加州大学创新基因组学研究所;3 加州大学伯克利分校加州定量生物科学研究所 (QB3);4 加州大学伯克利分校霍华德休斯医学研究所;美国加利福尼亚州伯克利市;5 加州大学伯克利分校地球与行星科学系;6 加州大学洛杉矶分校分子、细胞和发育生物学系;7 加州大学伯克利分校计算生物学中心;8 加州大学洛杉矶分校霍华德休斯医学研究所;9 格拉德斯通研究所;美国加利福尼亚州旧金山市;10 格拉德斯通-加州大学旧金山分校基因组免疫学研究所; 11 劳伦斯伯克利国家实验室分子生物物理和综合生物成像部;美国加利福尼亚州伯克利市;12 加利福尼亚大学伯克利分校化学系;美国加利福尼亚州伯克利市;
遗传信息的存储和转移[1,2]。 DNA甚至没有主要考虑,假设惰性化学性质将通过确保没有不希望的遗传指示改变来提供进化优势。 要克服的主要障碍是四个具有有限功能的规范性障碍(大部分是沃森和克里克基料配对),在糖的2'位置下没有羟基。 又花了十年的时间证明了dnazymes,单链的脱氧乙烯核苷酸(ODN),而没有体内对应物,也能够具有可以匹配酶的催化活性[3,4]。 可以通过迭代且功能强大的SELEX方法在体外选择dnazymes的适体(能够结合催化特性但没有催化特性的寡核苷酸[5,6],依赖于使用未修饰的核苷5' - 三磷酸盐(DNTP)。 这些核苷酸是(突变)DNA 的底物遗传信息的存储和转移[1,2]。DNA甚至没有主要考虑,假设惰性化学性质将通过确保没有不希望的遗传指示改变来提供进化优势。要克服的主要障碍是四个具有有限功能的规范性障碍(大部分是沃森和克里克基料配对),在糖的2'位置下没有羟基。又花了十年的时间证明了dnazymes,单链的脱氧乙烯核苷酸(ODN),而没有体内对应物,也能够具有可以匹配酶的催化活性[3,4]。可以通过迭代且功能强大的SELEX方法在体外选择dnazymes的适体(能够结合催化特性但没有催化特性的寡核苷酸[5,6],依赖于使用未修饰的核苷5' - 三磷酸盐(DNTP)。这些核苷酸是(突变)DNA
