残疾理论使我们能够审视我们对“健康”的先入之见,以及社会划分和与不符合既定规范的身体互动的标准。在第一章中,我概述了科学理论如何从其社会背景中产生,并研究了表观遗传学如何继承了二十世纪生物医学的病理影响。在第二章中,我介绍了残疾理论中出现的健康和具体化模型,并思考了它们如何有助于阐明表观遗传学话语不仅是从残疾病理化中产生的,而且是这种病理化的原因。最后,在第三章中,我以自闭症研究历史叙述为例,展示了理论如何具体化为真正的伤害,特别关注了表观遗传学对将后代的健康“归咎”给母亲的贡献。
1 德国埃尔朗根大学医院神经病理学研究所,埃尔朗根 - 纽伦堡弗里德里希 - 亚历山大大学 (FAU) 2 澳大利亚维多利亚州帕克维尔墨尔本大学弗洛里神经科学和心理健康研究所 3 荷兰阿姆斯特丹大学神经科学中心斯瓦默丹生命科学研究所 4 荷兰阿姆斯特丹大学阿姆斯特丹医学中心 (UMC) 阿姆斯特丹神经科学 (神经) 病理学系 5 德国波恩大学医学中心神经病理学系转化性癫痫研究科 6 美国芝加哥西北大学范伯格医学院神经内科 7 美国休斯顿贝勒医学院神经内科 8 日本福冈福冈大学医学院儿科 9 坎皮纳斯大学医学院医学遗传学和基因组医学系巴西坎皮纳斯 10 突尼斯拉苏克拉医疗中心 11 美国波士顿哈佛医学院波士顿儿童医院神经内科癫痫遗传学项目 12 英国伦敦帝国理工学院脑科学系 13 爱尔兰都柏林皇家外科医学院生理学和医学物理学系及 FutureNeuro SFI 研究中心 a 作者贡献相同
如果要在气候变化的背景下满足世界对粮食和饲料生产的需求,就必须继续了解和利用作物变异的遗传和表观遗传来源。传统上,人们认为植物育种的进步是由于选择了赋予理想表型的自发 DNA 序列突变。这些自发突变可以扩大表型多样性,育种者可以从中选择农学上有用的性状。然而,很明显,即使基因组序列没有改变,也可以产生表型多样性。表观遗传基因调控是一种在不改变 DNA 序列的情况下调控基因组表达的机制。随着高通量 DNA 测序仪的发展,分析整个基因组的表观遗传状态(称为表观基因组)已成为可能。这些技术使我们能够高通量地识别自发表观遗传突变(表观突变),并识别导致表型多样性增加的表观突变。这些表观突变可以产生新的表型,而致病表观突变可以代代相传。有证据表明,所选的农艺性状受可遗传的表观突变所制约,而育种者可能历来都会选择受表观等位基因制约的农艺性状。这些结果表明,不仅 DNA 序列多样性,而且表观遗传状态的多样性都可以增加表型多样性。然而,由于表观等位基因的诱导和传播方式及其稳定性与遗传等位基因不同,传统定义的遗传的重要性也不同。例如,对作物育种和作物生产重要的表观遗传类型可能存在差异。前者可能更多地依赖于长期遗传,而后者可能只是利用短期现象。随着我们对表观遗传学理解的不断进步,表观遗传学可能为作物改良带来新的视角,例如在育种中使用表观遗传变异或表观基因组编辑。在这篇评论中,我们将介绍表观遗传变异在植物育种中的作用,主要关注 DNA 甲基化,最后询问表观遗传学在作物育种中的新知识在多大程度上导致了其成功应用的记录案例。
上午 10:30 - 10:50 Karen Adelman 博士,哈佛医学院“ 理解增强子介导的基因活性控制” 上午 10:50 - 11:35 咖啡休息 上午会议 2 上午 11:35 - 12:35 会议主席:Andrea Piunti 博士,芝加哥大学 上午 11:35 - 11:55 Karim-Jean Armache 博士,纽约大学“ 表观遗传调控的分子机制” 上午 11:55 - 12:15 Cheryl Walker 博士,贝勒医学院“ 表观遗传衰老作为环境暴露进行发育重编程的目标” 下午 12:15 - 12:35 Laura Pasqualucci 医学博士,哥伦比亚大学“ CREBBP 错义和截断突变在指导生发中心 B 细胞命运启动淋巴瘤形成中的差异作用” 12:35 PM - 2:00 PM 午休
利益冲突:两位作者都填写了ICMJE统一披露表(可在https://dmr.amegroups。COM/ARTICE/VIEW/10.21037/DMR-24-10/COIF)。“炎症性肠病中表观遗传学的证据”是由编辑办公室委托的,没有任何资金或赞助。R.F.L. 和P.V.W. 是该系列的无薪访客编辑。 R.F.L. 获得了国家科学技术发展理事会(CNPQ)的支持(No. #302557/2021-0)。 P.V.W. 获得了参加会议或从Pesquisa do do eStado de圣保罗(FAPESP)参加会议或旅行的赠款和支持(No. #2019/16113-5)和国家替代,改进和减少动物(NC3RS)的国家中心(No. NCW0010471)。 他还参加了NC3RS赠款小组。 作者没有其他利益冲突要声明。R.F.L.和P.V.W.是该系列的无薪访客编辑。R.F.L. 获得了国家科学技术发展理事会(CNPQ)的支持(No. #302557/2021-0)。 P.V.W. 获得了参加会议或从Pesquisa do do eStado de圣保罗(FAPESP)参加会议或旅行的赠款和支持(No. #2019/16113-5)和国家替代,改进和减少动物(NC3RS)的国家中心(No. NCW0010471)。 他还参加了NC3RS赠款小组。 作者没有其他利益冲突要声明。R.F.L.获得了国家科学技术发展理事会(CNPQ)的支持(No.#302557/2021-0)。P.V.W. 获得了参加会议或从Pesquisa do do eStado de圣保罗(FAPESP)参加会议或旅行的赠款和支持(No. #2019/16113-5)和国家替代,改进和减少动物(NC3RS)的国家中心(No. NCW0010471)。 他还参加了NC3RS赠款小组。 作者没有其他利益冲突要声明。P.V.W.获得了参加会议或从Pesquisa do do eStado de圣保罗(FAPESP)参加会议或旅行的赠款和支持(No.#2019/16113-5)和国家替代,改进和减少动物(NC3RS)的国家中心(No.NCW0010471)。他还参加了NC3RS赠款小组。作者没有其他利益冲突要声明。
缩写:AcCC,腺泡细胞癌;AdCC,腺样囊性癌;EOLP,糜烂性口腔扁平苔藓;F,冰冻;Fe,女性;FFPE,福尔马林固定石蜡包埋;FoM,口底;HNSCC,头颈部鳞状细胞癌;HPV,人乳头瘤病毒;M,男性;MEC,粘液表皮样癌;N,数量;NEOLP,非糜烂性口腔扁平苔藓;NR,未报告;OKC,口腔角化囊肿;OL,口腔白斑;OLP,口腔扁平苔藓;OP,口腔癌前病变;OPSCC,口咽鳞状细胞癌;OSCC,口腔鳞状细胞癌;PA,多形性腺瘤;PBMC,外周血单核细胞;R,范围;rOSCC,复发性口腔鳞状细胞癌; SGT,涎腺肿瘤;WA,沃辛瘤。
生殖衰老始于女性的30多岁,更年期通常发生在48至50岁之间,而卵母细胞库存(卵巢衰老)的耗尽是女性一生中不可避免的过程,最终会影响预期和健康的影响。卵巢老化是一个多维过程,其特征是卵泡数量和卵母细胞质量的逐渐下降,大约37岁左右,导致后代的不育和先天性残疾增加(1)。尽管重要性很重要,但对人类卵巢衰老的基本生物学机制知之甚少,尤其是在延长女性生育能力和改善人口质量方面。尽管预期人类的预期寿命在过去一个世纪中显着延长,但绝经年龄在很大程度上保持不变,这暗示了遗传和表观遗传因素的潜在作用,但典范标志着启动的启动偏离衰老的启动,而在47%的案例中,遗传的年龄是遗传的,而不是遗传的年龄。口服避孕药,饮酒,吸烟和体育锻炼水平(3,4)调节这种内分泌老化过渡。最近,下丘脑 - 垂体轴的衰老以及端粒酶活性降低已成为生殖衰老的关键催化剂(5)。卵泡闭锁是由于颗粒和卵母细胞的细胞凋亡引起的,这是由活性氧(ROS)产生过多引起的,也会导致卵巢衰老。Wang L.等。 inWang L.等。in最近的研究使遗传多态性确定为自然更年期年龄异质性的主要贡献者,尤其是对于参与DNA修复途径的基因。病理卵巢衰老,例如早产卵巢不足和早期,也表现出相似的遗传敏感性(6)。这一现象的核心是卵巢功能的卵泡发育和维持,尤其是DNA甲基化的表观遗传修饰,在卵巢发育的关键阶段对基因表达产生了显着影响。这些研究提供了阐明遗传学与环境对卵巢衰老的相互作用的影响。该研究主题重点介绍了描述生理和病理卵巢衰老的遗传和表观遗传机制方面所取得的一些进步,从而提供了对延长女性生殖寿命的潜在机制的见解。研究表明DNA甲基化(DNAM)衰老与生殖衰老之间的联系。但是,DNAM与更年期年龄之间的因果关系仍然不确定。技术进步使使用各种分子或表型生物标志物测量生物年龄成为可能。
生物嵌入会发生时,生活经历会改变生物学过程以影响以后的生活健康和福祉。尽管存在广泛的相关数据,但仍支持表观遗传机制(例如DNA甲基化基础生物学嵌入)的观念,但缺乏因果数据。我们描述了特定的表观遗传机制及其在经验生物嵌入中的潜在作用。我们还考虑了基因组,表观基因组和基因表达之间的细微关系。我们将生物学嵌入到其复杂性中的生物学嵌入到表观遗传景观的能力受到了多种因素的影响而具有挑战性和复杂性。这些包括细胞类型,年龄,经验时机,性别和DNA序列。分子分析和表观基因组编辑的最新进展,再加上比较动物和人类纵向研究,应使该领域能够从相关性分析过渡到因果分析。
自发性脑内出血(ICH)约占中风病例的15%,并且仍然是神经系统发病率和死亡率的相当多的来源。鉴于老年人在老年人中的预期寿命和抗血栓疗法的广泛使用,ICH的发生率预计在未来几年[1,2]。主要ICH是指受损的动脉或小动脉的破裂,是不同类型的脑小血管疾病的最终表现,在大脑出血发生之前的几年内,在临床上进展[3]。尽管主要ICH可能负责80%的非创伤性ICH病例,但临床医生应考虑寻找其他原因(凝结型,血管畸形破裂,海绵状畸形,Moyamoya,Moyamoya,tumor,tumor,tumor,tumor,tumor,cerebral静脉hom虫的剧震(其他),也称为第二届评论。组织病理学观察(通过流行病学,神经影像学和遗传研究证实)证明,主要基础血管疾病根据大脑出血的位置而有所不同,因此,可以将主要ICH分类为两个主要类别:非lobar和Lobar和Lobar [4]。非肉眼ICH起源于深脑结构(基底神经节,丘脑,脑干和深小脑),并且一直与高血压诱导的血管病[5,6]一致。与CAA相关的Lobar ICH和高血压LOBAR ICH之间的区分很复杂,但由于复发和痴呆症的风险而具有预后相关性,在CAA相关的Lobar ICh中,它们都显着高于[9-11]。LOBAR ICH(位于皮质区域或皮质和白质之间的连接处)主要与脑淀粉样血管病(CAA)有关,其中β-淀粉样蛋白在脑膜和内室血管内积累,导致脑部和内部血管的减少,并损害了平稳的细胞,并损害了肌张力的细胞。破裂和流血[7,8]。