Epibond ® 8000 FR B 硬化剂 48 1 将两种组分彻底混合几分钟,直至获得均匀的混合物,或从 2:1 的 200 毫升或 50 毫升双筒胶筒中分配。对于 200 毫升规格,使用 MC 10 毫米直径 x 18 元件螺旋混合喷嘴或同等产品。对于 50 毫升规格,使用 MC 06 毫米直径 x 18 元件螺旋混合喷嘴或同等产品。应用将混合的粘合剂用抹刀涂抹到适当预处理的干燥接合面上。厚度为 0.004 至 0.012 英寸(0.1 至 0.3 毫米)的粘合剂层通常可提供最大的搭接剪切强度。但这种粘合剂设计为在最多 0.12 英寸(3 毫米)的层中有效。涂抹粘合剂后,应立即组装并夹紧要粘合的部件。固化期间整个接头区域的均匀接触压力将确保最佳性能。
本文所述产品(以下简称“产品”)的销售受 Huntsman Advanced Materials LLC 或其适当关联公司(包括但不限于 Huntsman Advanced Materials (Europe) BVBA、Huntsman Advanced Materials Americas Inc. 或 Huntsman Advanced Materials (Hong Kong) Ltd. 以下简称“Huntsman”)的一般销售条款和条件约束。以下内容取代买方文件。Huntsman 保证,在交货时间和地点,向买方出售的所有产品均符合 Huntsman 向买方提供的规格。尽管据亨斯迈所知,本出版物中包含的信息和建议在出版之日是准确的,但本出版物中包含的任何内容(除上述有关符合亨斯迈向买方提供的规格的规定外)均不得解释为任何明示或暗示的陈述或保证,包括但不限于任何适销性或针对特定用途的适用性的保证、不侵犯任何知识产权的保证、或有关质量或与先前描述或样品的一致性的保证,买方承担因使用此类信息和建议而产生的任何风险和责任。产品,无论是单独使用还是与其他物质结合使用。本文中的任何声明或建议均不得解释为关于任何产品是否适合买方或用户的特定用途的陈述或侵犯任何专利或其他知识产权的诱因。买方有责任确定此类信息和建议的适用性以及任何产品是否适合其特定用途,并确保其对产品的预期用途不侵犯任何知识产权。
尽管如此,由于文献或材料供应商数据表中关于材料高温 CHS 的报道非常少,因此湿气引起的应力大多被忽略。这是由于缺乏有效的测量方法和该领域的技术知识 [5]。由于测量过程中湿气会快速蒸发,因此测量高温膨胀具有挑战性。市售工具,如带相对湿度附件的动态机械分析仪 (DMA-RH) [5, 6],其温度能力有限,最高可达 85 !C,而典型的无铅焊料回流工艺可高达 260 !C。更高温度的测量在技术上具有挑战性。需要更高的压力来将湿气保持在高温下的液态,而使用当今的标准工具根本无法实现。一种更流行的方法是使用标准热机械分析仪 (TMA) 设备来测量加热时饱和样品的应变。快速解吸会导致湿气分布不均匀。因此,假设应变为平均应变。需要进行额外的水分质量校正后处理分析来补偿水分损失。据报道,这种方法往往会高估 CHS [2, 4]。此外,一些研究建议避免使用基于解吸的方法,因为某些材料可能具有不可逆的吸湿膨胀特性 [7]。另一种尝试过的方法是莫尔干涉法 (MI) [8, 9],它具有良好的准确性和可重复性。然而,它有固有的局限性,因为在样品表面复制的耐腐蚀光栅会导致测量误差,尤其是对于薄样品。此外,所有这些都是
表示芯片与环境之间的接触面。对于两种类型的 SMD 封装系列,可以使用两种类型的引线框架精加工:后镀和预镀。对于后镀系列(即裸铜/银点),电镀工艺是强制性的,以确保封装在印刷电路板 (PCB) 上的可焊性。对于预镀系列,由于多层精加工结构(例如 NiPdAu)可以跳过电镀工艺,从而保留封装在 PCB 上的可焊性,从而增强
估计公共报告信息收集负担平均为每份回应 1 小时,包括审查说明、搜索现有数据源、收集和维护所需数据以及完成和审查信息收集的时间。请将关于此负担估计或此信息收集的任何其他方面的评论(包括减轻此负担的建议)发送至华盛顿总部服务部、信息运营和报告理事会,地址:1215 Jefferson Davis Highway, Suite 1204, Arlington VA 22202-4302。受访者应注意,尽管法律有任何其他规定,但如果信息未显示当前有效的 OMB 控制编号,则任何人都不会因未遵守信息收集而受到处罚。
摘要 人们普遍提出添加纳米填料作为增强高压聚合物绝缘材料介电性能的方法,尽管文献中对此的报道褒贬不一。本文确定了二氧化硅纳米粒子延长失效时间的潜力,特别是通过抵抗环氧树脂中的电树枝生长。在混合之前用硅烷处理纳米粒子的好处很明显,可以减缓树枝生长并缩短失效时间。在实验室中测量了针状平面样品中树枝的生长情况,其中纳米填料的含量分别为 1、3 和 5 wt%。在所有情况下,平均失效时间都会延长,但在混合之前对纳米粒子进行硅烷处理可获得更好的效果。在填充量较高的硅烷处理情况下,树枝生长前会出现明显的起始时间。用硅烷处理的 5 wt% 填充材料的平均失效时间是未填充树脂的 28 倍。含有未处理和处理过的填料的纳米复合材料性能的提高归因于处理过的填料团聚物减少和分散性提高。局部放电 (PD) 测量表明,在处理过和未处理过的情况下,树木生长过程中的 PD 模式存在显著差异。这种区别可能为监测材料提供一种质量控制方法。特别是,在硅烷处理的情况下,观察到长时间未测量 PD。对未填充材料中的树木生长进行视觉成像,可以观察到树木在生长过程中从细树到深色树的变化性质。相应的 PD 测量表明深色树逐渐变得导电,并且测得的最大 PD 的增长取决于树木生长和碳化的相对速率。
摘要:本文结合并回顾了有关环氧聚合物树脂中各种潜在纳米燃料元件的性能的实验研究,这些元素被用作金属底物的保护性涂层。通过在环氧基质中分散二氧化硅,氧化铝,氧化钛,氧化钛,石墨氧化物和纳米粘土而形成的环氧复合材料在腐蚀抗性,粘附强度和分散性质的角度研究。本文涵盖了具有单元素增强颗粒的环氧纳米复合材料的研究,以及两个不同元素的混合物,这些元素被用作加固填充剂。讨论证人的各种腐蚀性保护评估技术,例如电化学研究,粘附测试,盐喷雾测试及其结果,并进行了分析,以概述环氧基质中纳米纤维的性能。
天然纤维复合材料对湿热环境(湿度和服务温度升高)高度敏感。可以通过使用纳米材料作为组成的增材制造来增强此类复合材料的长期行为。因此,这项研究研究了杂交亚麻纤维增强的环氧复合材料的机械性能,其为0%,0%,0.5%,0.5%,1%和1.5%的石墨烯纳米颗粒在暴露于1000、2000,3000小时的相对湿度为98%之后,在20°C和60°C和60°C C. C. C. c. comp的相对湿度为98%。通过弯曲和层间剪切测试。湿热调节模拟。这项研究的结果表明,石墨烯纳米颗粒在减少水分吸收和改善湿透性调节后的机械性能中起着重要作用。与没有石墨烯纳米颗粒的样品相比,杂化复合材料的弯曲和层间剪切强度增加了0.5%,1.0%和1.5%的石墨烯增加了77.7%,72.0%,77.1%和77.1%,以及75.5%,70.6%和73.5%,C。由于水分扩散到亚麻纤维和树脂塑料的燃料中,杂化复合材料随着调节温度和暴露持续时间的升高而增加。尽管如此,由于其在基质中的分布更好,因此发现0.5%石墨烯纳米颗粒在保留老化杂化复合材料的机械性能方面是最佳的。加速的测试结果表明,在在湿热环境中服役100年后,杂种复合材料分别可以保留至少57%和49%的弯曲和层间剪切强度,在30℃的温度下,澳大利亚的平均年度温度在30°C的温度下散发出来。
摘要 - 理解辐射对环氧树脂功能性能的影响对于它们在未来的粒子加速器(如未来的圆形碰撞器(FCC))中的应用至关重要。我们比较了可用于磁铁线圈真空浸渍的六个环氧树脂系统的辐照诱导的衰老率。衰老。dma的存储和损失模量的演变揭示了交联和链分裂对玻璃过渡温度(T g)的竞争影响。衰老率在不同的树脂中差异很大,并且在My750树脂系统中观察到最快的老化,T g以大约9°C/mgy的速率降低。
hal是一个多学科的开放访问档案,用于存款和传播科学研究文件,无论它们是否已发表。这些文件可能来自法国或国外的教学和研究机构,也可能来自公共或私人研究中心。