摘要 光标、头像、虚拟手或工具以及其他渲染的图形对象使用户能够与 PC、游戏机或虚拟现实系统等计算机进行交互。我们从用户的角度在“用户表征”的统一概念下分析这些不同对象的作用。这些表征是虚拟对象,它们人为地延伸了用户的身体,使他们能够通过执行不断映射到其用户表征的运动动作来操纵虚拟环境。在本文中,我们确定了一组与不同用户表征相关的概念,并对用户表征的控制和主观体验背后的多感官和认知因素进行了多学科回顾。这些概念包括视觉外观、多模态反馈、主动感、输入法、近体空间、视觉视角和身体所有权。我们进一步为这些概念提出了研究议程,这可以引导人机交互社区从更广泛的视角了解用户如何通过他们的用户表征进行感知和交互。
构建准确的地图是构成可靠的局部设备,计划和导航的关键构建块。我们提出了一种新的方法,可以利用LiDAR扫描来建立动态环境的准确地图。为此,我们建议将4D场景编码为新的时空隐式神经图表示,通过将时间依赖性的截断符号距离函数拟合到每个点。使用我们的代表,我们通过过滤动态零件来提取静态图。我们的神经表示基于稀疏特征网格,一种全球共享的解码器和时间依赖性的BAIS函数,我们以无监督的方式共同优化。要从一系列li-dar扫描中学习此表示,我们设计了一个简单而有效的损耗函数,以分段方式监督地图优化。我们在包含静态图的重建质量和动态点云的分割的各种场景上评估了我们的方法1。实验结果表明,我们的方法是删除输入点云的动态部分的过程,同时重建准确而完整的3D地图,以超出几种最新方法。
从私法角度的摘要中,化身的法律地位 - 化身或我们在荟萃分析中的数字表示形式通常被视为虚拟世界的有趣而独特的方面,但是它们使用的法律含义以及潜在的滥用 - 仍然很大程度上没有探索。在本文中,我解决了个人在在线虚拟平台中利用化身有关的各种问题,强调了它们的潜在收益优势和潜在问题。在这种情况下,我非常需要澄清元评估的内容,并提出了一个以私人法律为导向的框架来思考和调节数字化头像的某些方面,以合法的可行方式进行思考。Sumario - Los Avatares, o las representaciones de nosotros mismos en el Metaverso, con frecuencia son vistos como aspectos divertidos y únicos de los mundos virtuales, no obstante, las implicaciones jurídicas de su uso —y abuso— aún son un área mayormente inexplorada.En este artículo presento varias de las dificultades jurídicas que plantea el uso de los avatares en el en las plataformas del Metaverso, resaltando tanto sus potenciales beneficios como problemas.Para ello, ofrezco una muy necesaria aclaración de lo que es el Metaverso, y propongo un marco para analizar lo que podría ser una regulación de los Avatares de forma jurídicamente viable, especialmente desde el punto de vista del Derecho Privado.标题:UnRégimenJurídicopara los avatares en el Metaverso desde la Perspectiva del derecho privado。- 关键字:元文书,化身,私法,民事责任,法定人格,数字资产,NFT,产品责任,人工智能。关键字:元弗罗索,阿凡达,私法,法律人格,民事责任,数字资产,NFT,对产品有缺陷的责任,人工智能。 div>- doi:10.31009/indret.2024.i2.03
生成模型的最新进展导致了模型,这些模型既可以为大多数文本输入产生现实和相关的信息。这些模型每天都用于生成数百万张图像,并具有巨大影响诸如生成艺术,数字营销和数据增强等领域。鉴于它们的影响力,重要的是要确保生成的内容反映全球的伪影和周围环境,而不是过分代表世界的某些地区。在本文中,我们使用众包研究的研究衡量了通过dall·e 2产生的普通名词(例如房屋)的地理代表,以及稳定的扩散模型,其中包括27个国家 /地区的540名参与者。为了有意地指定没有国家名称的意见,生成的图像最反映了美国之后是印度的周围,而顶级世代很少反映出所有其他国家的周围环境(平均得分少于5分中的3个)。在输入中指定国家名称的代表性增加了1。平均在5-点李克特(Dall)的李子量表上为44点。75对于稳定的扩散,许多国家的超高分数仍然很低,这突出了将来模型在地理上更具包含的需求。最后,我们研究了量化使用用户研究的产生图像的地理代表性的可行性。1
Vision语言导航(VLN)要求代理在基于视觉观察和自然语言说明的3D环境中导航。很明显,成功导航的关键因素在于全面的场景理解。以前的VLN代理使用单眼框架直接提取透视视图的2D特征。虽然很简单,但他们为捕获3D几何和语义而努力,导致部分不完整的环境代表。为了实现具有细粒细节的全面3D表示,我们引入了体积环境(VER),将物理世界脱氧于结构化的3D细胞中。对于每个单元格,通过2D-3D采样将多视图2D特征归纳到如此统一的3D空间中。通过对VER的粗略到纤维特征进行推断和多任务学习,我们的代理人可以共同预测3D占用率,3D房间布局和3D边界框。基于在线收集的vers,我们的代理构成了体积状态估计,并构建情节内存以预测下一步。实验结果表明,我们从多任务学习的环境表示导致了VLN的可观绩效提高。我们的模型在VLN基准(R2R,Reverie和R4R)之间实现了最新的性能。
文章标题:人工智能(AI)在医疗保健中的应用:综述 作者:Mohammed Yousef Shaheen[1] 所属机构:沙特阿拉伯[1] Orcid ids:0000-0002-2993-2632[1] 联系电子邮件:yiroyo1235@tmednews.com 许可信息:本作品已根据知识共享署名许可 http://creativecommons.org/licenses/by/4.0/ 以开放获取的方式发表,允许在任何媒体中不受限制地使用、分发和复制,只要正确引用原始作品即可。使用条款和出版政策可在 https://www.scienceopen.com/ 上找到。预印本声明:本文为预印本,尚未经过同行评审,正在考虑并提交给 ScienceOpen Preprints 进行开放同行评审。DOI:10.14293/S2199-1006.1.SOR-.PPVRY8K.v1 预印本首次在线发布:2021 年 9 月 25 日
RE:HF9,2025年2月9日,Swedzinski主席和众议院能源,金融和政策委员会成员,DFL环境核心小组自2015年以来一直是DFL的社区核心小组。我们的使命是教育和动员明尼苏达州的公民解决气候危机,并保护,保存和恢复自然环境。我们写了反对HF 9的文章,我们认为这将不利于我们国家成功过渡到碳自由能的努力。HF 9急剧削弱了明尼苏达州的2040年100%无碳法律。第2节中的规定使电力公司无法通过提高费率反复遵守标准再遵守该标准的需求变得太容易了。公共公用事业委员会已经能够根据Minn Stat下延迟实施。216b.1691 subd。2b。简单地说,我们没有另外3,6年或更长时间来减少排放以防止最严重的气候影响。我们有达到2040年100%无碳目标的技术。缺少的只是政治意愿。HR9提高了长期以来对新的核电的暂停。明尼苏达州不需要我们也不可能负担新的核电站。我们具有丰富的风能和太阳能电位,当与智能电网,高效率传输线和存储空间合作时,可提供较低的成本能量。其他州的核项目已被证明花费的时间太长,无法以太阳能和风能高得多的成本允许和建造。HR9防止未使用的退休发电厂被拆除。我们没有生产核反应堆所需的燃料,也没有在数十万年前安全地存储废物的地方。这阻碍了利用土地清洁可再生能源的巨大机会。考虑明尼苏达州贝克尔的退休舍科工厂的现场发生了什么。该地点正在建设的大型太阳能项目预计将为他们的经济贡献约2.4亿美元。此外,这些基于化石燃料的发电厂经常被放置在不成比例地应对这些行动附近生活的影响的地区。居民应该看到这些地点是净化和重新利用的,以实现有益用途。HR9有利于昂贵的,效率低下的碳捕获和固存。不需要将这种做法作为优先方法,实际上可能与其他将为明尼苏达州带来好处的解决方案使用。减少昂贵的化石燃料的使用是我们环境和健康的双赢。真诚的,DFLEC执行委员会dflenvironmentalcaucus@gmail.com dflenvironment.org
尽管隐式神经表征 (INR) 近期取得了进展,但对于基于坐标的 INR 多层感知器 (MLP) 来说,学习跨数据实例的通用表征并将其推广至未见实例仍然具有挑战性。在这项工作中,我们为可推广的 INR 引入了一个简单而有效的框架,该框架使基于坐标的 MLP 能够通过仅调节早期 MLP 层中的一小组权重作为实例模式组合器来表示复杂数据实例;其余 MLP 权重学习跨实例通用表示的模式组合规则。我们的可推广 INR 框架与现有的元学习和超网络完全兼容,可用于学习预测未见实例的调节权重。大量实验表明,我们的方法在音频、图像和 3D 对象等广泛领域都实现了高性能,而消融研究验证了我们的权重调节。