文章标题:人工智能(AI)在医疗保健中的应用:综述 作者:Mohammed Yousef Shaheen[1] 所属机构:沙特阿拉伯[1] Orcid ids:0000-0002-2993-2632[1] 联系电子邮件:yiroyo1235@tmednews.com 许可信息:本作品已根据知识共享署名许可 http://creativecommons.org/licenses/by/4.0/ 以开放获取的方式发表,允许在任何媒体中不受限制地使用、分发和复制,只要正确引用原始作品即可。使用条款和出版政策可在 https://www.scienceopen.com/ 上找到。预印本声明:本文为预印本,尚未经过同行评审,正在考虑并提交给 ScienceOpen Preprints 进行开放同行评审。DOI:10.14293/S2199-1006.1.SOR-.PPVRY8K.v1 预印本首次在线发布:2021 年 9 月 25 日
文章标题:抗击 COVID-19:人工智能技术与挑战 作者:Nikhil Patel[1]、Sandeep Trivedi[2]、Jyotir Moy Chatterjee[3] 所属机构:毕业于杜比克大学,联系电子邮件 ID:Patelnikhilr88@gmail.com[1],IEEE 会员,毕业于 Technocrats Institute of Technology,联系电子邮件 ID:sandeep.trived.ieee@gmail.com[2],尼泊尔加德满都佛陀教育基金会[3] Orcid id:0000-0001-6221-3843[1]、0000-0002-1709-247X[2]、0000-0003-2527-916X[3] 联系电子邮件:sandeep.trived.ieee@gmail.com 许可信息:本作品已以开放获取形式发表根据 Creative Commons 署名许可 http://creativecommons.org/licenses/by/4.0/,允许在任何媒体中不受限制地使用、分发和复制,前提是正确引用原始作品。条件、使用条款和出版政策可在 https://www.scienceopen.com/ 找到。预印本声明:本文为预印本,尚未经过同行评审,正在考虑并提交给 ScienceOpen Preprints 进行公开同行评审。DOI:10.14293/S2199-1006.1.SOR-.PPVK63O.v2 预印本首次在线发布:2022 年 7 月 25 日 关键词:COVID-19、SVM、神经网络、NLP、数学建模、高斯模型、疫情防控
在当今的数字景观中,门户系统(PS)已成为提供重要的教育,管理和通信服务不可或缺的一部分。但是,这些系统的复杂性和互连性增加使它们容易受到各种异常的影响,包括恶意攻击,注射缺陷,拒绝服务(DOS)攻击,数据泄露和人类错误。这些漏洞会导致运营中断,财务损失和声誉损失,从而减少用户信任。例如,加州大学洛杉矶分校(加州大学洛杉矶分校)的重大网络事件,例如2015年7月的数据泄露,该事件揭露了450万张记录,成本超过7000万美元,曼彻斯特2023年7月的网络受害者是网络攻击的受害者,导致了大约11,000名员工的危害(PRLIGHT),多数超过46,000名学生的数据;异常检测系统。在尼日利亚,2023年的总统选举记录了传播和数字经济部长Isa Pantami(Ukagwu。(2023),进一步强调了对强大安全机制的需求。
摘要:我们提出了一种方法,将其转换为2D蓝图转换为3D模型从原始单视图像中的可变形对象类别,完全没有外部监督。我们的方法利用了一个自动编码器框架,该框架将每个输入图像分解为四个基本组件:深度,颜色校正,观点和照明。没有明确标签就可以实现此分解。我们利用转换对象外观的事实,基础结构通常保持对称,可用于指导分离过程。要处理可能表现出部分对称性的对象,我们引入了一个学习的对称概率图,该图被整合到模型中,并与其他组件一起端到端学习。我们的方法能够从单视图像中准确恢复各种可变形物体的3D形状,例如人的脸,猫的脸和汽车,而无需依赖任何监督或先前的形状模型。在实验评估中,我们证明了我们的无监督方法显着优于依赖2D图像对应关系的有监督方法,从而在3D形状重建方面达到了卓越的准确性。这项工作为无监督的3D对象学习提供了有希望的步骤,并在计算机视觉和图形中使用了潜在的应用。关键字:OPENCV,深度处理,MIDAS,图像处理,Pytorch。
急性肝衰竭病例和致命结局已有报道。 Zolgensma也可能发生急性严重的肝损伤,急性肝衰竭和氨基转移酶升高。 肝脏障碍患者的风险可能更高。 在输注之前,通过临床检查和实验室检查评估所有患者的肝功能。 在输注Zolgensma之前和之后,对所有患者施用全身性皮质类固醇。 输注后至少3个月继续监测肝功能,其他时间如临床上所示。 如果怀疑急性严重的肝损伤或急性肝衰竭,请立即咨询儿科胃肠病医生或肝病学家。急性肝衰竭病例和致命结局已有报道。急性严重的肝损伤,急性肝衰竭和氨基转移酶升高。肝脏障碍患者的风险可能更高。在输注之前,通过临床检查和实验室检查评估所有患者的肝功能。在输注Zolgensma之前和之后,对所有患者施用全身性皮质类固醇。输注后至少3个月继续监测肝功能,其他时间如临床上所示。如果怀疑急性严重的肝损伤或急性肝衰竭,请立即咨询儿科胃肠病医生或肝病学家。
这项研究是在洛法县利比里亚佐尔佐尔的埃斯特·培根护理学院和助产士进行的。本质上,考试蓝图在教育计划的行为中非常重要。al-Shahrani,(2019年)发现,考试蓝图对学生的影响与许多学术挑战有关,例如研究行为不佳(不阅读每天阅读),记住由于蓝图可用性而引起的考试,得分更高,但不记得材料。有些学生是一些学生得分较低的学生,而另一些学生由于考试蓝图的准备不佳而得分不佳,由于学习习惯不佳而在等待考试蓝图的同时,与其他学生的互动不足。考试蓝图对考生和审查员很有价值,因为它列出并区分了如果构造良好的考试类别。考试蓝图用于帮助学生在准备考试时集中学习。学生的表现仍然是教育工作者的重中之重。它是为了在当地,地区,全球和全球上产生改变。教育工作者,培训师和研究人员长期以来一直有兴趣通过多种方式探索有效促进学习者表现质量的变量,在考试前,哪种方式可以提供考试蓝图。
真菌是高度多样的,并且在生态系统中执行许多关键任务,从有机物的分解到营养物质通过菌丝的易位以及土壤中遥远的壁cor的联系。但是,真菌不孤立地生活;取而代之的是,它们与植物和动物建立了密切的关联,作为其复杂的微生物群的一部分。真菌以其对大多数血管植物的基本菌根共生体的作用而闻名,以及与藻类或蓝细菌的地衣共生的作用;鲜为人知的是它们与细菌和RNA病毒的微生物共生关系[1,2]。在1970年通过显微镜观察到了真菌中的细菌性内膜[3],最近的发现表明,这些内共生细菌可以是某些真菌中突出的特征[1,4]。相比之下,大多数在1962年正式描述[5]最初对其宿主的影响(尽管有些可以减少真菌的生长和毒力)的大多数分枝病毒。根瘤菌是一个真菌的一个充分的例子,可以携带细菌和病毒内共生菌,被称为真菌霍洛比恩(图1)。根茎物种用于生产发酵食品,酶和代谢产物。仍然,它们也可能是农作物(包括草莓,地瓜和大米)的致病性,并在免疫验证的人类中引起致命感染。在其著名的特征中,有能力产生霉菌毒素,包括根茎毒素,根茎及其衍生物。另一个引人注目的分解是R的菌株。孢子形成仅随着真菌 - 细菌共生的重建而恢复[7]。有趣的是,关于根瘤菌毒素产生和非生产菌株的研究表明,参与根蛋白毒素产生的生物合成基因并不是真菌的起源。相反,所有产生根茎毒素的菌株均由细菌共生体定植,这些菌株含有能够产生根蛋白毒素的多酮化合物生物合成基因[6]。缺乏细菌共生体的微孢子不再无性繁殖并形成孢子囊和孢子囊孢子[7]。的确,细菌共生体是在孢子孢子中遗传的(图1),以确保它们向后代的传播[7]。r。Microsporus需要2个兼容伴侣(一种构成类型的阳性(MT+)和一种负型负菌株(MT-)菌株),并与Trisporic Acid(一种性激素)的协作产生,用于形成Zygospores的性激素(图1)。非常明显,
保护第26条第26条第23条,第24条和第25条所指的规定不适用于:我使用创建和/或产品相关权利的简短报价来报告仅旨在提供实际信息目的的实际事件; II创建和/或产品相关权利的重复
在起草此申请时,我们考虑了两种策略。首先是讨论我们采用的新技术,通过提高我们的服务速度和提供满足他们不断变化的需求的金融产品的能力,这有助于保持我们与现有成员的相关性。我们的信用合作社将继续采用能够满足新一代客户对金融机构期望的便利的技术。第二个是 Lakehurst Naval FCU 打造和正确塑造一个充满活力和学识渊博的董事会的重要性。我们希望创建一个目标一致的领导团队。目标是建立一个愿意并能够采取必要步骤自我改进的董事会,以指导和改善我们信用合作社的未来。由于我能够更好地讨论董事会成员生命周期,因此我选择将其作为本文讨论的主要战略领域。我们的管理团队、首席执行官和首席运营官被鼓励向董事会提醒和/或推荐潜在的监督委员会 (SC) 成员以供考虑。董事会的职责和责任是对被要求加入 SC 的人做出最终决定。正如本文进一步解释的那样,我们的董事会成员必须首先担任监督委员会成员(除非由提名委员会直接提名为董事会成员,并由会员直接选举为董事会成员)。董事会选择不让任何信用合作社员工担任董事会成员,除非该人不再是信用合作社的员工。我们会根据需要与董事会举行临时会议,但董事会会议通常是面对面、通过 Zoom 或电话会议举行的。董事会的核心职能是为信用合作社提供总体指导和控制。董事会在提供指导时采取统一的目标行动。新的 SC 成员需要了解如何
医学应用:基因工程最有前景的方面之一是其在医学上的应用。科学家正在探索通过纠正有缺陷的基因来治疗遗传疾病的方法。基于 CRISPR 的疗法为镰状细胞性贫血和囊性纤维化等疾病带来了希望 [5]。此外,个性化医疗(根据个人的基因组成量身定制治疗方案)正在成为现实。这种方法有可能彻底改变癌症治疗,使治疗更有效、侵入性更小。