船舶结构中平面内受载加强筋的破坏将导致相邻板材同时屈曲。DMEM10(加拿大军队水面战舰结构设计)和NES 110(英国国防部海军工程标准)评估加筋板的极限强度,即通过在极限板材抗压强度曲线和柱强度曲线之间进行迭代获得极限承载能力。目前,极限板材抗压强度是根据Faulkner有效宽度方程得出的,而加强筋和板材的组合强度则通过Bleich抛物线来评估。抛物线的原始推导仅考虑了材料的非弹性,而没有考虑缺陷。Smith等人根据有限元结果推导出小缺陷、平均缺陷和大缺陷的柱强度曲线集。这些结果以数据表格式呈现在SSCP23(英国国防部水面舰艇结构设计)中。将传统程序的极限强度与 SSCP23 中的设计曲线进行比较,发现存在很大差异。采用有限元分析(包括缺陷和残余应力的影响)来研究这些差异。为了在设计程序中提供替代方案,还研究了土木结构和海上建筑标准中的一些相关规定。
当今的中型量子计算机虽然不完美,但已经能够执行明显超出现代经典超级计算机能力的计算任务。然而,到目前为止,量子大规模解决方案仅针对有限的问题集实现。这里采用基于相位估计和电路宽度和深度的经典优化的混合算法来解决科学和工程领域中普遍存在的一类特定大型线性方程组。引入了基于相关相位估计幺正运算的纠缠特性的线性系统分类,从而能够通过简单的矩阵到电路映射高效地搜索解决方案。在几台 IBM 量子计算机超导量子处理器上实现了一个 2 17 维问题,这是量子计算机解决线性系统的破纪录结果。演示的实现为未来线性方程组解的量子加速探索设定了明确的基准。
3调查9 3.1问题。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。9 3.2实施。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。9 3.2.1没有训练,最小化。。。。。。。。。。。。。。。。。。。。。。9 3.2.2更简单的模型 - 多项式求解器。。。。。。。。。。。。。。。。。。9 3.2.3复合模型 - x µ的方程求解器。。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>11 3.2,4.4复杂模型 - P(x)的方程求解器。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>13 3.3结果。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>153。1.3.1简单模型 - 多项式求解器。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>15 3.3.3.2复合模型 - Xμ的方程求解器。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>17 3.3.3完整求解器 - P(x)的方程求解器。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>22 3.4讨论。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>24 div>
rsa是不对称加密中广泛采用的方法,通常用于数字签名验证和消息加密。RSA的安全性依赖于整数因素的挑战,一个问题在计算上不可行或高度复杂,尤其是在处理足够大的安全参数时。RSA中整数分解问题的有效利用可以使对手可以假设关键持有人的身份并解密此类机密信息。安全硬件中使用的密钥特别重要,因为它们保护的信息的价值通常更高,例如在确保付款交易的背景下。通常,RSA面临各种攻击,利用其关键方程式中的弱点。本文引入了一个新的漏洞,该漏洞可以同时分解多个RSA模量。通过使用对(𝑁𝑁,𝑒)和固定值𝑦满足双苯胺方程𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑥 -2 - 2 𝜙(𝑁𝑁)=𝑧𝑖𝑧𝑧𝑧𝑧𝑧𝑧𝑧𝑖𝑖𝑧,我们使用晶格基碱基还原技术成功地分解了这些模量。值得注意的是,我们的研究扩大了被认为是不安全的RSA解密指数的范围。
摘要。在本文中,我们提出了一种有效的指数积分有限元方法,用于求解矩形域中的一类半线性抛物线方程。提出的方法首先使用具有连续的多线矩形基函数的有限元近似进行模型方程的空间离散化,然后采用明确的指数runge-kutta方法,用于产生半差异系统的时间集成,以产生全diScrete的数值解决方案。在某些规律性假设下,在h 1 -norm中测得的错误估计值是成功得出的,该方案具有一个和两个RK阶段。更值得注意的是,该方法的质量和系数可以用正交矩阵同时对角线,该基质提供了基于张量的乘积谱分解位置和快速傅立叶变换的快速溶液过程。还进行了两个维度和三个维度的各种数值实验,以验证理论结果并证明该方法的出色性能。
摘要:首次考虑具有恒定延迟的非线性Schrödinger方程。这些方程是具有立方非线性的经典schrödinger方程的概括,而更复杂的非线性schrödinger方程包含功能任意性。从物理的角度来看,考虑了数学物理学非线性方程延迟出现的可能原因。为了构建精确的解决方案,使用了相关方程解的结构类比。获得了具有延迟的非线性schrödinger方程的新精确解,这些方程在基本函数或四函数中表示。还发现了一些具有广义分离变量的更复杂的解决方案,这些解决方案是通过普通微分方程的混合系统描述的,而无需延迟或延迟的普通微分方程。这项工作的结果对于开发具有延迟的非线性schrödinger方程所描述的新数学模型可能很有用,并且给定的精确解决方案可以作为旨在评估数值方法准确性的测试问题的基础,以评估非线性偏差方程与延迟集成非线性偏差方程。
摘要 本文旨在设计和研究无人驾驶飞行器 (UAV) 六旋翼飞行器在三维空间中的动态模型。基于牛顿-欧拉法确定了导出的运动方程。这些方程具有非线性和耦合性。此外,为了使六旋翼飞行器具有真实的运动,模型中还嵌入了气动效应和扰动。六旋翼飞行器是一种垂直起降 (VTOL) 飞行器,具有悬停能力和灵活性,因此与固定翼飞行器相比毫不逊色。尽管如此,它的动态模型很复杂,被描述为不稳定的,并且不能在不扭转其轴的情况下进行平移运动。除了控制和仿真设计模块外,还通过 LabVIEW 软件建立了结论性数学模型。因此,对多个实验状态的稳定性进行了分析,以便提前展示用于平衡和轨迹跟踪的适当控制器。关键词:——无人机,六旋翼飞行器动力学,非线性控制,耦合和欠驱动模型,牛顿-欧拉方法。
摘要解决QUBO问题的时间复杂性主要取决于概率中逻辑变量的数量。本文主要集中于找到一个方程系统,该方程式唯一地定义了AES密码的Sbox,并允许我们在QUBO形式中获得代数攻击AES密码的QUBO形式中最小的已知优化问题。为了有效地执行该任务,已经提出了一种使用线性反馈移位寄存器搜索有效方程式的新方法。使用已确定的效率系统将AES密码转换为QUBO问题。与我们先前的结果相比,此方法使我们能够将AES-128的目标Qubo问题减少近500个逻辑变量,并允许我们使用量子退火速度快四倍地执行代数攻击。
“因此,大部分物理学和整个化学的数学理论所必需的基本物理定律已经被完全了解,困难仅在于这些定律的准确应用会导致方程式过于复杂而无法解出。”
结果表明,我们的建议提供了可解释的解决方案,而无需牺牲预测准确性或安全性,并提供了一种有希望的糖尿病管理葡萄糖预测方法,可以平衡准确性,安全性,可解释性和计算效率。