参考文献[1] V. Vedia,H。Mach,L。Fraile,J。Udías,S。Lalkovski,物理学中的核仪器和方法A:加速器,光谱仪,探测器和相关设备795,144(2015)。doi https://doi.org/10.1016/j.nima.2015.05.058。URL https://www.sciencectirect.com/science/article/pii/s0168900215007172 [2] V. V. V. V. V. V. V. V. V. V. V. V. V. V. (2017)。doi https://doi.org/10.1016/j.nima.2017.03.030。 URL https://www.sciendirect.com/science/article/pii/s0168900217303704 [3] 463,394(2020)。 doi https://doi.org/10.1016/j.nimb.2019.04.044。 URL https://www.sciencecret.com/science/article/pii/s0168583x19302289 [4] E. Picado,M。Carmona-Gallardo,J。Calmona-Gallardo,J。Cal-González,J。Cal-González,L。Fraile,L。Frail,L。Frail,H。Mach,H。Mach,H。Mach,H。Mach,J.Udíad,V。V. v. v. vedia,71(2012)。 doi https://doi.org/10.1016/j.apradiso.2016.11.017。 URL https://www.sciendirect.com/science/article/pii/s09 [5] (2013)。 doi https://doi.org/10.1016/j.nima.2012.11.009。 URL https://www.sciencecendirect.com/science/article/pii/s0168900212013010 [6] Hamamatsu。 hamamatsu光子系统R9779数据表。doi https://doi.org/10.1016/j.nima.2017.03.030。URL https://www.sciendirect.com/science/article/pii/s0168900217303704 [3] 463,394(2020)。doi https://doi.org/10.1016/j.nimb.2019.04.044。URL https://www.sciencecret.com/science/article/pii/s0168583x19302289 [4] E. Picado,M。Carmona-Gallardo,J。Calmona-Gallardo,J。Cal-González,J。Cal-González,L。Fraile,L。Frail,L。Frail,H。Mach,H。Mach,H。Mach,H。Mach,J.Udíad,V。V. v. v. vedia,71(2012)。doi https://doi.org/10.1016/j.apradiso.2016.11.017。URL https://www.sciendirect.com/science/article/pii/s09 [5] (2013)。doi https://doi.org/10.1016/j.nima.2012.11.009。 URL https://www.sciencecendirect.com/science/article/pii/s0168900212013010 [6] Hamamatsu。 hamamatsu光子系统R9779数据表。doi https://doi.org/10.1016/j.nima.2012.11.009。URL https://www.sciencecendirect.com/science/article/pii/s0168900212013010 [6] Hamamatsu。 hamamatsu光子系统R9779数据表。URL https://www.sciencecendirect.com/science/article/pii/s0168900212013010 [6] Hamamatsu。hamamatsu光子系统R9779数据表。URL https://www.digchip.com/datasheets/parts/datasheet/190/r9779-pdf.phpURL https://www.digchip.com/datasheets/parts/datasheet/190/r9779-pdf.php
工业赞助的博士学位:配备机器学习(ML)作为公式设计和验证的高吞吐量(HTP)的“长凳上的实验室(LOB)”设置。伯明翰大学化学工程学院教授与配方工程CDT CRODA税收助学金,每年20,000英镑,还支付了费用。项目描述:大多数化学产品由多种配制的化合物组成,其中开发过程是迭代,费力和复杂的。配制的产品行业为英国经济的总增值贡献了超过1.49亿英镑,需要创新方法来加速创新速度并增强相应的可持续性概况。该项目的目的是开发一种与机器学习算法集成的高度创新的“实验室(LOB)”设置,作为用于筛选和开发在广泛应用程序中使用的配方产品的高吞吐量方法。该项目具有以下目标:i)进一步开发LOB设置,该设置结合了微流体和微型特征技术; ii)验证LOB方法的准确性和效率; iii)将ML算法与LOB操作集成在一起,形成封闭的反馈回路; iv)在研究具有高吞吐量效率的一系列配方产品时应用LOB设置。知识将用于指导新配制产品的开发。他们将开发可转让技能的组合,例如项目管理,沟通和团队工作,这确保了项目完成后的出色就业能力。与工业合作伙伴Croda紧密合作,博士候选人将在胶体和界面科学,计算机科学和仪器方面发展广泛的技能,并建立了对配方工程的广泛认识。如果您具有化学,物理或化学工程的背景,并且对可持续性和仪器充满热情,那么这是一个绝佳的机会。资金详细信息:符合EPSRC资金候选人的资格必须在工程或科学学科或2(2)加MSC中至少具有2(1)。要申请,请通过电子邮件将您的简历发送至CDT-Formulation@contacts.bham.ac.uk。仅由于资金限制而向英国国民开放。截止日期:2025年3月21日
为了应对不断增长的能源需求、日益加剧的气候变化问题以及日益严重的环境恶化,可再生能源的引入已在各个行业和地区获得关注。与此同时,科学家和工程师已经认识到热回收系统在减少能源消耗方面的潜力,从而进一步研究其实际应用。本研究引入了一种创新设计,将涡流发生器集成到同心管热交换器中,用于从为 48 间住宿提供服务的多排水水系统中回收热量。通过评估该设计与各种可再生能源结合使用时的经济和环境影响来评估其可持续性。具体而言,目标是量化在拥有 48 间住宿的建筑的多排水应用中实施此设计所产生的成本和环境节约。数值研究阐明了流速变化对传热、总传热和热增强因子的影响。分析了四种可再生能源输入 - 太阳能、风能、生物质能和水力发电 - 以及一个存储系统(抽水蓄能)。研究表明,设计实施可使冷水温度升高 3.5 至 7.5 ◦ C。此外,太阳能、风能、生物质能、水力发电和抽水蓄能的每日环境节约估计分别为 0.783 欧元、0.339 欧元、0.141 欧元、0.027 欧元和 1.356 欧元。相反,每种相应能源的每日经济节约计算为 3.62 欧元、2.49 欧元、5.05 欧元、3.62 欧元和 6.70 欧元。这项研究强调了所提出的设计在通过环境保护和经济效率促进可持续发展方面的可行性。
背景:研究了椭圆形管热交换器中纳米流体(NF)流动的热流性能,并用两个旋转磁带装配和涡轮。在先前的研究中,使用NF作为使用NF作为使用NF作为使用NF的旋转扭曲磁带作为使用NF的工作流体的问题较少。方法:考虑到在管状热量器中采用传热改善方法的重要性,请参见此处检查的被动和抗热传热改善方法。作为一种新型的研究案例,使用了水2 o 3 nf的旋转磁带;进行了灵敏度分析,以揭示纳米颗粒(ϕ),磁带旋转速度和重新数量对NU数字,泵浦功率和功绩数字(FOM)的影响。将5000 wm-2的热通量应用于壁表面,并采用了两相混合方法进行模拟。在具有三种不同旋转速度的固定和旋转扭曲磁带的情况下,研究了热交换器的性能。结果表明,在所有情况下,增加了RE数量,ϕ和旋转速度将增加NU数量和泵送功率。ϕ的增加将NU数字提高了6.1% - 19.4%,泵送功率提高了59.2 - 280%。在较低的RE数字下增加NU数量的变化较低,并且在高RE数字下变为较高。ϕ增量对传热的影响正在增加,但在旋转磁带而不是固定磁带和普通管子的情况下以更高的倾斜速率发生。增加RE数量会减少FOM,同时增加ϕ会改善它。在旋转扭曲的磁带模式的情况下,FOM的值始终大于一个,对于固定模式,FOM的值始终低于0.9。显着的发现:FOM的最高值为1.57,是最高的旋转速度,最低的RE数和ϕ = 1%。实践意义和应用的潜在领域:在热交换器设备中有效传热的需求不断增加,因此需要采用热传递增强技术。通过数值研究了扭曲磁带的效果,它们的旋转以及NF S在热交换器中的应用。
8 Rachel Hall,“智库警告,英国公共服务因短期政策而陷入‘厄运循环’”《卫报》(2023 年 10 月 30 日)https:// www.theguardian.com/society/2023/oct/30/uk-public-services-policy-institute-for-government-report 于 2024 年 6 月 24 日访问。9 Michael Goodier、Carmen Aguilar García 和 Richard Partington,“十年紧缩政策如何挤压英格兰的议会预算”《卫报》(2024 年 1 月 29 日)https://www.theguardian.com/uk-news/2024/jan/29/how-a-decade-of-austerity-has-squeezed-council-budgets-in-england 于 2024 年 6 月 24 日访问。10 Eugenio Vaccari 和Yseult Marique,‘五分之一的议会面临‘破产’风险——地方当局耗尽权力后会发生什么
这项研究研究了跨临界二氧化碳(CO 2)循环与常规地热双闪光循环的整合,以提高各种入口温度(225°C,250°C,275°C)的能量和充电效率。尽管地热双重闪光周期和CO 2跨临界周期都因其高效率和可持续性而被认可,但在不同的热条件下解决其合并性能的全面比较分析仍然很少。为了弥合这一研究差距,开发了一个详细的计算模型,以评估在各种操作场景下基础和集成系统的热力学行为。结果表明,集成系统在能源效率方面产生显着提高,基本周期为0.112、0.1265和0.1383,相比0.08436、0.1038和0.1197。exergy分析揭示了在较高温度下的潜在热效率挑战,因此需要进一步优化。该研究还探讨了分离器压力变化对系统性能的影响,这表明精确的压力管理可以大大增强功率输出。调查结果倡导更广泛地采用综合地热系统,强调了它们的潜力,以实质上提高可再生能源生产的效率,并提出了用于系统优化和环境影响评估的未来研究的途径。
Paolo Martini 将担任新银行的首席执行官 米兰,2024 年 3 月 28 日 在今天举行的约 2,000 名 Azimut Holding 股东协议成员参加的年度会议上,将概述创建新金融科技银行的宏观指导方针。 该项目在运营设计完成后,将接受主管监管机构的批准。 Azimut Holding 董事会批准的项目涉及意大利金融顾问网络的部分分拆,然后合并为一家新的数字银行,目标是在 6-9 个月内将其在证券交易所上市。 新公司独立于 Azimut Group,股权结构中可以包括银行/金融合作伙伴,成立时总资产至少为 200 亿欧元,拥有约 1,000 名金融顾问,并将由强劲的增长驱动。新实体的 10% 股本将在 5 年内(每年 2%)分配给现有财务顾问和来自市场的加入者,从而重建基于合作伙伴关系和财务顾问参与持股的模式,该模式是 Azimut 34 年历史上的特色。这家新的数字银行扩大了 Azimut 集团在意大利的所有客户的价值主张,包括零售/富裕和私人领域。Azimut Holding 将受益于新实体对转让时现有资产产生的收入的 20 年收入保证,并将利用新公司提供的银行服务。新银行将以技术为重点,通过向客户提供最先进的数字平台之一为财务顾问提供服务。它将利用管理财务顾问网络的管理专业知识、Azimut 全球团队管理的公共和私人市场的产品平台以及专门针对高净值客户的多家族办公室模式。一旦获得批准并开始运营,新公司的目标是在正常市场条件下,在 5 年内将利润和管理/管理资产翻一番,这与 Azimut Group 之前的战略业务计划一致。在前 5 年,管理解决方案、保险、咨询和管理资产的流入预计将在 160 亿至 190 亿欧元之间,流动性和经常账户将增长 75 亿至 100 亿欧元。到 2029 年,该计划包括从市场中增加 500 名新专业人士,包括财富经理、私人银行家和财务顾问。这
自主性是热门话题之一,人工智能在感知和决策任务方面的潜力开辟了新的可能性。然而,自主系统也提高了公众的接受度和认证挑战。如果自动驾驶汽车是最广为人知的例子之一,那么我们会看到航空领域自主系统的出现,包括送货无人机、自动空中出租车或飞机 [16]。本文将重点介绍这些特定的系统。虽然航空认证最重要的问题是可靠性和安全性,但系统抵御恶意攻击的能力也是一个主要问题。我们的工作主要集中在这个主题上,开发了一种针对航空电子系统的攻击(拦截)。航空安全主要集中在通过控制通过的人员和货物来确保机场的安全。一旦飞机开始飞行,就可以通过监视所有飞机都应尊重的特定空域部分(如航路)来确保安全。航路的设计是为了确保两架飞机之间的分离,任何不遵守这些规则的飞机都会被识别、跟踪并最终被消灭。然而,在城市空中交通 (UAM) 环境中,确保安全免受恶意攻击者攻击的有效方法将不再适用。即使在 UAM 中扩展航路的概念,到地面的距离、航路之间的距离以及潜在的威胁数量也会使
PAWEŁ NOWAKOWSKI (IOA) ADAM OKNIŃSKI (IOA) ANNA KASZTANKIEWICZ (IOA) BŁAŻEJ MARCINIAK (IOA) DAMIAN KANIEWSKI (IOA) FILIP CZUBACZYŃSKI (IOA) JACEK MUSIAŁ (IOA) MICHAŁ RANACHOWSKI (IOA) WITOLD WĄSOWSKI (IOA) MACIEJ BORYS (ASTRONIKA)
2021 财年是 PVA TePla AG 成立新管理委员会团队后的第一个完整财年:Manfred Bender 及其管理团队将公司重点放在增长市场(尤其是半导体行业)和更快的增长速度上。PVA TePla 管理结构的人员更新由监事会大力推动,现已成功完成。这为公司约 580 名员工在过去财年取得的出色业绩奠定了坚实的基础。尽管持续的 COVID 19 疫情带来了不确定性,但 PVA TePla AG 仍坚决利用其主要市场经济复苏带来的机遇。业务的广泛增长和高盈利能力令人印象深刻,不言而喻。数字化和可再生能源等旨在为社会增值的可持续技术是成功的典范。