aoˆut 2024:«约束下的随机过程»(Bielefeld);火星2024年:法国日本概率互动会议(IHES);果汁。2023:43 e Conf'erence«随机过程及其应用»(Lisbonne); d´ec。2022:会议«Lorentz气体在平滑的Ergodic理论与概率理论的交汇处»(Leiden,Pay-Bas); MAI 2022:会议«随机步行,聚合物和本地化»(Cirm,Marseille); 2021年11月:会议«随机几何时代»(法国Dunkerque); 2020年9月:会议“随机聚合物和网络”(法国Porquerolles); Juin 2019:第2届意大利概率和数学统计会议(Vietri Sul Mare); 2018年9月:统计力学模型中的“缩放限制”(Oberwolfach); Juillet 2018:CIMPA学校«随机结构的几何和缩放»(布宜诺斯艾利斯); Juillet 2018:概率和数学物理学的蒙特利尔夏季研讨会; 2017年9月:研讨会«随机步行,折叠和相关主题»(佛罗伦萨,Italie); Juin 2016:研讨会«柔软的当地时代,聚合物和相关主题»,(Im´era,Marseille); Juillet 2013:36 E Conf'erence«随机过程及其应用»(美国博尔德); Janv。2013:«欧洲裔年轻的欧洲概括者»(埃因霍温(Eindhoven),薪水); Mai 2012:conf'erence«随机聚合物和相关主题»(Singapour)。
8.1 针对合作伙伴 A 的每个问题的方差分析 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ... ... 143 8.7 Q5 概述. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ... . ... 145 8.19 Q6 协议追随者概述. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176 8.23 协议遵循者合作伙伴 A 的 Q6 和 Q7 的方差分析 . . . . . . . . . . . . . . . 176 8.24 协议遵循者合作伙伴 B 的 Q6 和 Q7 的方差分析 . . . . . . . . . . . . . . . . 177
12. (6 分) 在欧洲核子研究中心的 ALPHA 反氢实验中,反质子沿着光束管传播到实验中。我们需要降低它们的能量,以便将它们与正电子结合以制造反氢。反质子被引入两端之间电位差为 5 kV 的区域。光束中每个反质子会损失多少能量?如果 α 粒子(裸氦核)通过这种电位差加速,它会获得多少能量?为什么当反质子处于具有这种电位差的区域中时,α 粒子会损失能量,而 α 粒子会获得能量?
摘要:本文考虑了信息Web资源的效率动力学的数学模型。在差异方程式的形式中,将间隔离散模型应用于证实,并提出了模型参数估计的方法。所提出的方法基于人工蜜蜂菌落算法(ABCA)。根据与环境监测服务相关的Web资源功能的数据进行了许多实验研究。已经研究了信息Web资源用户活动的指标。已考虑以差异方程为间隔模型(IDM)的三种模型构建案例。它们在一般的表达中有所不同。是计算实验的结果,这表明模型的充分性取决于差异方程的表达。在其错误选择的情况下,所提出的参数识别方法可能是有效的。描述了Web资源的效率的差异方程式中获得的间隔离散模型,使得在使用此Web资源的组织中优化业务流程以及最佳分配组织资源和行政服务中心员工的工作量成为可能。基于进行的实验,确定了所提出模型应用的效率。
摘要。两个椭球集的闵可夫斯基和与差一般不是椭球形的。然而,在许多应用中,需要计算在某种意义上近似闵可夫斯基运算的椭球集。在本研究中,考虑了一种基于所谓椭球微积分的方法,该方法提供了参数化的外部和内部椭球族,可以紧密近似于闵可夫斯基椭球的和与差。近似沿方向 l 是紧密的,因为椭球在 l 上的支撑函数等于和与差在 l 上的支撑函数。然后可以根据相应椭球的体积或迹的最小(或最大)测量值来选择基于外部(或内部)支撑函数的近似。建立了利用欧几里得几何或黎曼几何对两个正定矩阵的闵可夫斯基和与差的基于体积的近似及其均值之间的联系,这也与它们的 Bures-Wasserstein 均值有关。
不匹配负性(MMN)基本上反映了听觉变化检测。尽管可以通过行为听觉测试方法来评估听觉变化的启示,但客观方法(例如MMN)的可靠性提高使其更有价值。这项研究的目的是使用MMN和行为方法检测和衡量强度明显的差异。频繁刺激与不经常刺激之间的强度差异的水平最低,并且引起的MMN波被接受为MMN阈值。包括20-30岁的60名受试者,30名女性(平均年龄21.70,SD = 1.91岁)和30名男性(平均年龄22.77,SD = 3.01),年龄在20-30岁之间。在整个样品中,在从右耳获得的MMN阈值和从左耳获得的MMN阈值之间发现了显着的差异(无论性别如何)05)。在使用行为方法和MMN获得的值进行比较时,在两个性别中的右侧或左侧都找不到显着差异(p>0。05)。结果表明,通过行为方法确定的值和左耳和左耳的MMN在两个性别中都是相似的。
最近的研究表明,与灰氢相比,蓝氢可减少温室气体 (GHG) 排放 5 – 36%,6 而对上游甲烷泄漏和碳捕获率的不同假设则可使蓝氢与灰氢相比减少 26 – 75%。7 电力来源导致电解氢 1,3,7 – 10 的温室气体足迹存在很大差异,差异最高可达 200%(即绝对差异除以平均值),如何在氢气和联产氧气之间分配温室气体排放的“多功能性”问题也是如此(差异为 158% 11)。具体而言,绿色氢的温室气体足迹因使用不同的可再生电力(风能或太阳能光伏)而有所不同:102 – 120% 的差异,9 不同的电解技术(碱性电解或聚合物电解质膜电解):16 – 40% 的差异,9 以及对未来改进的各种假设(提高效率和延长使用寿命):18% 的差异。8 绿色氢的温室气体足迹范围很广,这需要进一步了解如何评估这些足迹,它们如何出现差异以及如何降低它们。对于绿色氢,特别值得关注的是额外性原则,12 这指的是仅使用新安装的、额外的、可再生电力容量来生产绿色氢,以满足电解器日益增长的需求(从而防止额外的化石电力发电)。欧盟委员会的 2020 年氢能战略说明了额外性的相关性,该战略预计到 2030 年绿色氢气产量将达到 1000 万吨,2 这将需要欧盟 2020 年所有风力涡轮机发电量 394 TW h 的 140%(参考文献 13),以每千克氢气 55 kW h 的电力需求计算。10
图1.1:经典位的可能状态之间差异的视觉表示,可以假设在两个点上映射的值和一个量子,可以跨越Bloch球的整个表面[4]