典型的缺席癫痫发作是一种广义的癫痫事件,其特征是意识突然变化,这是各种广义癫痫综合症的标志。区分类似的发发中肠和发作脑电图(EEG)癫痫样模式带来了挑战。然而,定量性脑电图,特别是针对脑电图节奏的光谱分析,显示出可能存在的潜力。本研究旨在研究与间歇性状态相比,在剧院前和剧院后期的EEG光谱动力学和熵模式中可辨认的差异。我们分析了11例确认典型缺勤癫痫发作的患者的20种脑电图症状,并评估了在剧院前,剧院后和间隔间隔期间进行的记录。功率谱密度(PSD)用于定量分析,该分析集中于三角洲,theta,alpha和beta频段。此外,我们使用近似(APEN)和多尺度样品熵(MSE)测量了EEG信号规律性。的发现表明,与间隔间隔相比,尤其是在大脑后部区域中,在截然和术后间隔中,三角洲和theta功率显着增加。我们还观察到熵前后的熵降低,在前脑区域中具有更明显的影响。这些结果提供了有价值的信息,可以在典型的癫痫发作的情况下有助于有助于癫痫样模式。我们发现的含义是对精确医学诊断和患者管理的精确医学方法的希望。总而言之,我们对脑电图数据的定量分析表明,PSD和熵措施具有前景,是将ICTAL与典型缺勤或怀疑典型癫痫发作的患者区分开的潜在生物标志物。
摘要:近年来,人们对肿瘤细胞线粒体作为药物靶点的兴趣重新燃起。这种关注部分归因于新发表的论文,这些论文记录了实体肿瘤的异质性特征,包括缺氧区和低氧区,这些区域会培养具有不同代谢特征的细胞群。这些细胞群包括肿瘤起始细胞或癌症干细胞,它们具有很强的适应氧气供应减少的能力,可在糖酵解和氧化磷酸化之间快速切换作为能量和代谢物的来源。此外,该细胞亚群表现出很高的化学和放射抗性以及很高的肿瘤再增殖能力。有趣的是,研究表明,抑制肿瘤细胞中的线粒体功能会影响糖酵解途径、细胞生物能和细胞活力。因此,抑制线粒体可能是根除癌症干细胞的可行策略。在此背景下,过去十年的药物化学研究已经合成并表征了能够将新型或现有药效团运送到线粒体肿瘤细胞的“载体”,其机制利用了载体的物理化学性质和线粒体的固有特性。这些药效团的化学性质各异,有些是从植物中分离出来的,有些则是在实验室中合成的。其中一些分子具有活性,而有些则是前体药物,可单独评估或与针对线粒体的药物相关。最后,研究人员最近描述了一些安全性和有效性已得到充分证明的药物,它们可能通过非典型机制在肿瘤细胞中发挥线粒体特异性抑制作用。通过将这些分子与线粒体载体分子连接起来,可以提高这些分子的有效性。这些有前景的药物应该在临床研究中单独进行评估,并与经典化疗药物联合使用。
前颅底有多种病变。该区域最常见的肿瘤类型是垂体腺瘤、颅咽管瘤和脑膜瘤(1、2)。Rathke 裂囊肿也是与先天性鞍区肿块鉴别诊断的常见方法(3)。早期诊断该区域病变的重要性已得到强调,因为即使是这些良性病变,如果位于无法控制生长的区域,也可能呈进行性、持续性发展,有些病变还可能表现出侵袭性(4)。磁共振(MR)扫描具有良好的软组织分辨率,因此被强烈推荐用于前颅底病变的术前评估。磁共振成像(MRI)对这四种类型病变的描述具有特征性(5)。然而,MRI 图像的诊断准确性取决于放射科医生的经验,在某些情况下,具有相似 MRI 模式的病变可能彼此相似并使放射学诊断复杂化(6,7)。因此,有助于术前鉴别的新方法可能具有临床价值。放射组学可以从医学图像中提取高维特征,提供与病变病理生理相关的信息,而这些信息难以通过肉眼检查获得(8-10)。此外,可以利用新型机器学习技术分析病变的可挖掘放射组学特征,该技术在生物医学领域显示出良好的应用前景(11)。基于放射组学的机器学习已在先前的研究中应用于各种脑肿瘤的鉴别诊断,代表着在临床实践中应用于促进诊断和指导决策的潜力(12-16)。本研究评估了机器学习技术结合MRI影像组学特征和临床参数对前颅底四种常见病变的鉴别诊断能力。根据病变的流行病学和部位,将鉴别诊断分为三组:垂体腺瘤与颅咽管瘤(鞍区/鞍上区最常见的肿瘤)、脑膜瘤与颅咽管瘤(鞍旁区最常见的肿瘤)以及垂体腺瘤与Rathke裂囊肿(鞍内区最常见的病变)。
Error 500 (Server Error)!!1500.That’s an error.There was an error. Please try again later.That’s all we know.Error 500 (Server Error)!!1500.That’s an error.There was an error. Please try again later.That’s all we know.
作为第一大和第三大常见的痴呆症,阿尔茨海默病(AD) ( Association et al., 2011 ) 和额颞叶痴呆(FTD) ( Bang et al., 2015 ) 经常被误认为是彼此。这是由于它们在临床表现、认知领域障碍、脑萎缩以及语言能力、行为和人格的进行性改变方面具有相似性( Neary et al., 2005; Alladi et al., 2007; Womack et al., 2011 )。尽管在建立完善的临床鉴别诊断指南方面付出了巨大努力,但诊断的准确性仍然不令人满意。具体而言,当使用 NINCDS-ADRDA 标准( Neary et al., 1998 )进行诊断时,区分 AD 患者和 FTD 患者的灵敏度可高达 93%;然而,由于大多数 FTD 患者也符合 NINCDS-ADRDA 的 AD 标准(Varma 等人,1999 年),因此 FTD 识别的特异性仅为 23%。由于临床实践中需要对不同痴呆亚型应用不同的对症干预治疗(Pasquier,2005 年),因此开发计算机辅助诊断系统以提高这两种痴呆症鉴别诊断的准确性至关重要。在 T1 加权磁共振成像 (MRI) 中观察到的脑萎缩模式已成功用于捕捉人脑的结构变化(Du 等人,2007 年;Davatzikos 等人,2011 年),特别是用于开发可以识别大脑痴呆病理类型的计算系统。已针对 AD 和 FTD 建立了带有 MRI 的计算机辅助诊断系统(Suk 等人,2014 年;Jiskoot 等人,2018 年)。除了与正常衰老进行二元分类外,T1 加权 MRI 还用于 AD 和 FTD 的鉴别诊断,通过区分这两种痴呆症的萎缩模式(例如受影响的区域和变化率)来进行鉴别诊断(Raamana 等人,2014 年)。人们探索了各种结构生物标志物来区分 AD 和 FTD,例如灰质 (GM) 体积减少(Rabinovici 等人,2008 年)、皮质变薄(Du 等人,2007 年)、基于整个大脑 GM 和白质 (WM) 体积分布的高维特征(Davatzikos 等人,2008 年),以及单个结构的萎缩和形状畸形(Looi 等人,2010 年)。之前大多数关于痴呆分类的计算机辅助诊断系统的研究都侧重于二元分类任务,例如 NC vs. FTD、NC vs. AD 或 FTD vs. AD,文献中很少有直接的多类痴呆分类方法。Raamana 等人比较了多种结构特征,例如体积、拉普拉斯不变量和表面位移
精神分裂症研究表明,该组中所有死亡原因中多达40%可以归因于自杀(Wildgust等,2010),而25-50%的精神分裂症患者试图在他们的一生中自杀(Bohaterewicz等人,2018年; Cassidy等,2018年)。因此,非常需要开发更准确和客观的方法来预测精神分裂症患者自杀的风险。功能磁共振成像(fMRI)是一种非侵入性,广泛使用的方法,允许一种方法来测量人脑的活性。静止状态(RS)反过来被认为是高度有效的,因为它捕获了大脑总活动的60-80%(Smitha等,2017)。此外,一些研究表明,它允许监测治疗结果以及评估精神疾病的生物标志物(Glover,2011; Moghimi等,2018)。Previous studies indicate gray matter volume reduction in dorsolateral prefrontal cortex (DLPFC), superior temporal gyrus, as well as insular cortex in patients after suicide attempt, compared to the ones without suicide attempt in the past ( Besteher et al., 2016 ; Zhang et al., 2020 ), whereas fMRI studies revealed that during a simple task based on cognitive control, suicide thoughts were associated随着PFC活性的降低和先前的自杀企图的病史导致前皮层的活性降低(Minzenberg等,2014; Potvin等,2018)。体积和功能任务的先前结果fMRI分析表明,默认模式网络(DMN),显着性网络(SN)和Sensorimotor Network(SMN)中包含的区域的潜在静止状态大脑活动变化。近年来,RSFMRI数据的机器学习应用程序越来越多,以进行预后评估并在各个组或条件之间进行差异(Pereira等,2009)。最近,采用了以fMRI为公正的生物标志物的ML分类器来识别从事自杀相关行为的人,包括自杀念头。例如,Just等。(2017)能够正确地识别17名自杀参与者中的15个,灵敏度为0.88,使用高斯幼稚的贝叶斯算法和fMRI数据的特定为0.94。在最近的工作中,Gosnell等人。(2019)使用了随机森林(RF)算法和RSFMRI功能连通性数据,来自精神病患者,使他们能够以81.3%的敏感性正确地对自杀行为进行了分类。据我们所知,先前的研究都没有集中于各种ML分类器,以区分基于RSFMRI数据的健康控制(HCS),自杀风险(SR)和非杀伤性风险(NSR)精神分裂症患者。 在当前的工作中,我们的目标是将ML方法与RSFMRI数据相结合,以便研究所选的分类器是否允许在具有和没有自杀风险的精神分裂症患者之间进行分歧。 最终,执行了五种算法,例如梯度提升(GB),最小绝对收缩和选择操作员(LASSO),Logistic回归(LR),RF和支持向量机(SVM),以提高诊断准确性的可靠性。 每个指标礼物据我们所知,先前的研究都没有集中于各种ML分类器,以区分基于RSFMRI数据的健康控制(HCS),自杀风险(SR)和非杀伤性风险(NSR)精神分裂症患者。在当前的工作中,我们的目标是将ML方法与RSFMRI数据相结合,以便研究所选的分类器是否允许在具有和没有自杀风险的精神分裂症患者之间进行分歧。最终,执行了五种算法,例如梯度提升(GB),最小绝对收缩和选择操作员(LASSO),Logistic回归(LR),RF和支持向量机(SVM),以提高诊断准确性的可靠性。每个指标礼物
