我们提出了一个二维硬核环路模型,是一种在Berezinskii-kosterlitz-无用的过渡时期出现的渐近自由质量连续性量子场理论的一种方式。无需微调,我们的模型可以在接近相变时在大规模阶段重现经典晶格XY模型的通用级尺度函数。这是通过在热力学极限下降低回路配置空间中的fock-vacuum位点的散发性来实现的。与传统的XY模型相比,在Berezinskii-Kosterlitz上的某些通用量在我们的模型中显示出较小的有限尺寸效应。我们的模型是欧几里得时空中渐近自由质量量子场理论的Qubit正则化的一个典型例子,并有助于了解如何在不进行微调的情况下作为分离的固定点上的相关扰动而出现渐近自由。
了解人类大脑如何处理听觉输入仍然是一个挑战。传统上,人们会区分低级和高级声音特征,但它们的定义取决于特定的理论框架,可能与声音的神经表征不匹配。在这里,我们假设构建一个数据驱动的听觉感知神经模型,对相关声音特征做出最少的理论假设,可以提供一种替代方法,并可能更好地匹配神经反应。我们收集了六名观看长时间故事片的患者的皮层脑电图记录。原始电影配乐用于训练人工神经网络模型以预测相关的神经反应。该模型实现了高预测准确率,并且很好地推广到第二个数据集,其中新参与者观看了不同的电影。提取的自下而上的特征捕捉了特定于声音类型的声学特性,并与各种响应延迟曲线和不同的皮质分布相关。具体而言,一些特征编码了与语音相关的声学特性,其中一些特征表现出较短的延迟曲线(与后外侧裂皮质中的反应相关),而另一些特征表现出较长的延迟曲线(与前外侧裂皮质中的反应相关)。我们的研究结果支持并扩展了当前对语音感知的看法,证明了外侧裂皮质中存在时间层次,并且在视听语音感知过程中涉及该区域以外的皮质部位。
摘要 目的:脑机接口 (BCI) 技术的发展是帮助因严重运动瘫痪而失去说话能力的人实现交流的关键。一种越来越受关注的 BCI 控制策略采用从神经数据进行语音解码。最近的研究表明,直接神经记录和高级计算模型的结合可以提供有希望的结果。了解哪些解码策略可以提供最佳和直接适用的结果对于推动该领域的发展至关重要。方法:在本文中,我们优化并验证了一种解码方法,该方法基于语音重建,该语音重建直接从语音生成任务期间来自感觉运动皮层的高密度皮层脑电图记录中进行。主要结果:我们表明 (1) 专用的机器学习优化重建模型是实现最佳重建性能的关键;(2) 重建语音中的单个单词解码准确率达到 92%-100%(偶然水平为 8%);(3) 从感觉运动大脑活动直接重建可以产生可理解的语音。意义。这些结果强调了模型优化以实现最佳语音解码结果的必要性,并强调了基于感觉运动皮层重建的语音解码为开发下一代 BCI 通信技术所提供的潜力。
有资格担任Renacyt Researcher(代码P0024778),他是西班牙未来的工业技术医生的候选人。 div>他还是土木工程的硕士学位,来自巴西Fluminense联邦大学(UFF)的家用汽车技术专业,以及Federico Villarreal国立大学(UNFV)的机器工程师。 div>目前是北部私立大学(UPN)的研究教授,并且是UFF的Capes奖学金,他参加了研究项目。 div>介绍了他在法国EE举行的国际会议上的研究工作。uu。,摩洛哥,希腊和意大利。 div>还在Aims Energy,Energy Reports和Heliyon等索引杂志上发表了他的研究作品,他在该杂志上介绍了Microdores,储能和可再生能源存储。 div>
Dunsmore G、Guo W、Li Z、Bejarano DA、Pai R、Yang K、Kwok I、Tan L、Ng M、De La Calle Fabregat C、YaƟm A、Bougouin A、Mulder K、Thomas J、Villar J、Bied M、Kloeckner B、Dutertre CA、Gessain G、Chakarov S、Liu Z、Scoazec JY、Lennon-Dumenil AM、Marichal T、Sautès-Fridman C、Fridman WH、Sharma A、Su B、Schlitzer A、Ng LG、Blériot C、Ginhoux F. 时间和位置决定单核细胞的命运及其向肿瘤相关巨噬细胞的转变。科学免疫学。 2024 年 7 月 26 日;9(97):eadk3981。 Ng MSF、Kwok I、Tan L、Shi C、Cerezo-Wallis D、Tan Y、Leong K、Calvo GF、Yang K、Zhang Y、Jin J、Liong KH、Wu D、He R、Liu D、Teh YC、Bleriot C、Caronni N、Liu Z、Duan K、Narang V、Ballesteros I、Moalli F、Li M、Chen J、Liu Y、Liu L、Qi J、Liu Y、Jiang L、Shen B、Cheng H、Cheng T、Angeli V、Sharma A、Loh YH、Tey HL、Chong SZ、Iannacone M、Ostuni R、Hidalgo A、Ginhoux F、Ng LG。肿瘤内中性粒细胞的确定性重编程。科学。 2024 年 1 月 12 日;383(6679):eadf6493。 2023 Caronni N、La Terza F、Vittoria FM、Barbiera G、Mezzanzanica L、Cuzzola V、Barresi S、Pellegatta M、Canevazzi P、Dunsmore G、Leonardi C、Montaldo E、Lusito E、Dugnani E、Citro A、Ng MSF、Schiavo Lena M、Drago D、Andolfo A、Brugiapaglia S、Scagliotti A、Mortellaro A、Corbo V、Liu Z、Mondino A、Dellabona P、Piemonti L、Taveggia C、Doglioni C、Cappello P、Novelli F、Iannacone M、Ng LG、Ginhoux F、Crippa S、Falconi M、Bonini C、Naldini L、Genua M、Ostuni R. IL-1β+ 巨噬细胞促进胰腺癌的致病性炎症。自然 。 2023年11月;623(7986):415-422。李明,吴明,吴LG。通过鸡尾酒疗法激发中性粒细胞的抗肿瘤免疫力。 Cancer Cell.2023 年 2 月 13 日;41(2):227-229。 2022 Gu Y、Low JM、Tan JSY、Ng MSF、Ng LFP、Shunmuganathan B、Gupta R、MacAry PA、Amin Z、Lee LY、Lian D、Shek LP、Zhong Y、Wang LW。 GIFT 队列中 2019 年产前冠状病毒病的免疫和病理生理分析:新加坡的一项病例对照研究。前儿科。 2022 年 9 月 15 日;10:949756。 Teh YC、Chooi MY、Liu D、Kwok I、Lai GC、Ayub Ow Yong L、Ng M、Li JLY、Tan Y、Evrard M、Tan L、Liong KH、Leong K、Goh CC、Chan AYJ、Shadan NB、Mantri CK、Hwang YY、Cheng H、Cheng T、Yu W、Tey HL、Larbi A、St John A、Angeli V、Ruedl C、Lee B、Ginhoux F、Chen SL、Ng LG、Ding JL、Chong SZ。过渡性前单核细胞出现在周围,用于宿主防御细菌感染。滑雪进阶2022 年 3 月 4 日;8(9):eabj4641。
方法在补充了10%FCS,1%谷歌补充剂(Gibco),100 U/ml青霉素和100μg/ml链霉菌素的IMDM(Gibco)中培养了衍生成近单倍型HAP1细胞的细胞培养。siRNA转染是根据制造商的指南使用Rnaimax(Invitrogen)进行的。在这项研究中使用了以下siRNA:Sinon-targetable(Dharmacon),Sipolg2(地平线,TargetPlus,SmartPool),SIMRPL23(Horizon,Targetplus,TargetPlus,Smartpool)。将所有药物(Aphidicolin,Hu,Olaparib,Rad51i(B02),DNA-PKI(NU74441)和寡霉素A)溶解在DMSO中,并以指示浓度使用。细胞使用具有137CS源的γ提取器(最佳疗法)进行γ辐射。生长测定HAP1细胞以1500个细胞/孔的密度将HAP1细胞铺在96孔板中,并被视为5天。5天后,使用100%甲醇固定细胞,并在室温下使用Crystal Violet染色2H。随后,将晶体紫溶解在10%乙酸中,并使用Biotek Epoch Epoch分光光度计在595 nm处测量强度。使用非线性拟合,sigmoidal,4pl,x是log(浓度),将这些测量值用于棱镜中的IC50计算。在9mm玻璃盖上生长免疫荧光细胞,并在室温下以4%甲醛和0.2%Triton X-100固定10分钟。使用了以下抗体:人类抗克雷斯特(Cortex Biochem,CS1058),兔抗PH3SER10(Campro,#07-081),小鼠抗ERCC6L(PICH)(ABNOVA,ABNOVA,000548421-B01P)。所有初级抗体在4°C的夜间孵育。使用固定缓冲液I(BD生物科学)固定细胞。细胞。二级抗体(分子探针,Invitrogen)和DAPI在室温下孵育2小时。使用延长金(Invitrogen)安装盖玻片。使用具有60倍1.40 Na油目标的Deltavision Deonvolution显微镜(Applied Precision)获取图像。SoftWorx(应用精度),ImageJ,Adobe Photoshop和Illustrator CS6用于处理获得的图像。单倍体插入诱变筛选基因对用APH或HU处理的HAP1细胞的存活至关重要,如先前所述35,使用单倍体插入诱变筛查鉴定。诱变的HAP1细胞是从Brummelkamp实验室获得的。简短地,获得HAP1细胞的诱变如下:在HEK293T细胞中产生了基因陷阱逆转录病毒。每天两次收获逆转录病毒至少三天,并通过离心(使用SW28转子进行2小时,21,000 rpm,4°C,4°C)进行沉淀。在8μg/ml硫酸素硫酸素的存在下,在T175烧瓶中至少连续两天,在8μg/ml硫酸素的存在下,将大约4000万个HAP1细胞通过浓缩基因陷阱病毒的转导而被诱变。在包含10%DMSO和10%FCS的IMDM培养基中冷冻诱变细胞。解冻后,在存在27.5 nm adphidicolin或100μmHu的情况下,将诱变的HAP1细胞转移了10天。传递后,通过胰蛋白酶-EDTA收集细胞,然后进行沉淀。为了最大程度地减少潜在地含有杂合突变的二倍体细胞的混杂,用DAPI染色固定的细胞,以允许使用Astrios Moflo对G1单倍体DNA含量进行分类。将3000万个排序的细胞在56°C下裂解过夜,以使使用DNA迷你试剂盒(QIAGEN)进行基因组DNA分离。插入位点映射基因陷阱插入位点通过LAM-PCR放大,然后进行捕获,ssDNA接头连接和指数放大,并在测序之前使用含有Illumina适配器的引物,如前所述,如前所述35。映射和插入位点的分析以前描述了78。简短地,在对HISEQ 2000或HISEQ 2500(Illumina)进行测序之后,将插入位点映射到人类基因组(H19),允许一个不匹配,并与RefSeq坐标相交,以将插入位点分配给基因。基因区域在相对链上重叠的基因区域没有考虑进行分析,而对于在相同链基因名称上重叠的基因是串联的。对于每种复制和两种药物治疗(APH或HU)基因的必要性都是通过二项式检验确定的。合成致死性。一个基因通过所有Fisher的测试,其p值截止为0.05,效应大小至少为0.12(减法比率wt sense比率 - 复制应力条件感官比率)。
演讲口头演讲2023诺贝尔医学和生理学奖2023年。帕兹,玻利维亚。2022年,“适应内石器时代的微生物以突然在环境条件下变化”。1 ST玻利维亚分子生物学研讨会。2022“由社区结构分析确定的Uyuni Salt Flat(玻利维亚)中的微生物群分散体”。半会议。Mayagüez, Puerto Rico. 2020 “RolesoftheregulatoryRNAintheadaptationofmicrobialcommunitiesto environmental stress”. 2 ND International Congress of Biotechnology. Santa Cruz, Bolivia. 2019 “Insights into regional and global dispersion of microorganisms: biogeography of halophiles as a model”. II Scientific Journeys, La PAZ,玻利维亚,2019年,“多个工作假设,可以在微生物群落中处理复杂性”。ASM Microbe 2019, San Francisco, CA. 2018 “Detection of ubiquitous and confinedmicroorganismsataglobalscalein salineandhypersalineenvironments:meta-analysisperspectiveofhalophilic communities”.6 th Studentresearchsymposium:Passingthetorchtothenext世代。玻利维亚的苏克雷。污染物intharenthypershypersalineenenncormentintheworld”。
在两个空间维度中,准长范围超导的熔化是通过涡流 - 抗抗反应对的增殖和解开,这是一种被称为Berezinskii-Kosterlitz-kosterlitz-thoubles-thouble(bkt)的现象。尽管已经在大量测量中观察到了这种过渡的特征,但是这些实验通常是复杂的,模棱两可的,无法解决涡流解开过渡的丰富物理。在这里,我们表明局部噪声磁力测定法是一种灵敏的无创探针,可以提供有关比例依赖性涡流动力学的直接信息。尤其是通过解决磁噪声的距离和温度依赖性,可以实验研究涡流气体的重新归一化组流程,并跟踪原位涡旋的发作。特别是,我们预测(i)噪声对温度的非单调依赖性和(ii)局部噪声几乎与BKT转变处的样品 - 探针距离无关。我们还表明,噪声磁力测定法可以区分高斯超导订单参数的流量与拓扑涡流闪光,并可以检测到未结合的涡流的出现。BKT过渡时的弱距离依赖性也可以用来将其与准粒子背景噪声区分开。我们的预测可能在许多非常规超导体的实验范围内。
乔治华盛顿大学教育与培训1998博士生物学。西班牙维戈大学。summa cum Laude和论文奖。1993 M.S. 生物学。 西班牙维戈大学。 summa cum Laude。 1992 B.S. 生物学。 圣地亚哥大学西班牙。 summa cum Laude。 专业就业2021-副教授。 生物统计学和生物信息学系。 米尔肯学院公共卫生学院,美国乔治华盛顿大学,2019 - 2021年助理教授。 生物统计学和生物信息学系。 米尔肯学院公共卫生学院,美国乔治华盛顿大学,2017 - 2019年助理教授。 流行病学和生物统计学系。 米尔肯学院公共卫生学院,美国乔治华盛顿大学,2013 - 2017年助理研究教授。 美国乔治华盛顿大学计算生物学研究所2014-2017 K12学者。 K12职业发展计划:DC中的儿科肺部疾病的OMIC。 美国国家医学中心,2008-2016 CentroDevistryaçãoemBioversidade E RocursosGenéticos,葡萄牙2006- 2008年高级研究科学家。 Genoma LLC,美国2001-2006研究助理。 Brigham Young University,美国1999-2001 Fulbright博士后研究员。 美国杨大学,美国1998年博士后研究员。 英国赫尔大学,1992 - 1998年研究助理。1993 M.S.生物学。西班牙维戈大学。summa cum Laude。1992 B.S. 生物学。 圣地亚哥大学西班牙。 summa cum Laude。 专业就业2021-副教授。 生物统计学和生物信息学系。 米尔肯学院公共卫生学院,美国乔治华盛顿大学,2019 - 2021年助理教授。 生物统计学和生物信息学系。 米尔肯学院公共卫生学院,美国乔治华盛顿大学,2017 - 2019年助理教授。 流行病学和生物统计学系。 米尔肯学院公共卫生学院,美国乔治华盛顿大学,2013 - 2017年助理研究教授。 美国乔治华盛顿大学计算生物学研究所2014-2017 K12学者。 K12职业发展计划:DC中的儿科肺部疾病的OMIC。 美国国家医学中心,2008-2016 CentroDevistryaçãoemBioversidade E RocursosGenéticos,葡萄牙2006- 2008年高级研究科学家。 Genoma LLC,美国2001-2006研究助理。 Brigham Young University,美国1999-2001 Fulbright博士后研究员。 美国杨大学,美国1998年博士后研究员。 英国赫尔大学,1992 - 1998年研究助理。1992 B.S.生物学。圣地亚哥大学西班牙。summa cum Laude。专业就业2021-副教授。生物统计学和生物信息学系。米尔肯学院公共卫生学院,美国乔治华盛顿大学,2019 - 2021年助理教授。生物统计学和生物信息学系。米尔肯学院公共卫生学院,美国乔治华盛顿大学,2017 - 2019年助理教授。流行病学和生物统计学系。米尔肯学院公共卫生学院,美国乔治华盛顿大学,2013 - 2017年助理研究教授。美国乔治华盛顿大学计算生物学研究所2014-2017 K12学者。K12职业发展计划:DC中的儿科肺部疾病的OMIC。 美国国家医学中心,2008-2016 CentroDevistryaçãoemBioversidade E RocursosGenéticos,葡萄牙2006- 2008年高级研究科学家。 Genoma LLC,美国2001-2006研究助理。 Brigham Young University,美国1999-2001 Fulbright博士后研究员。 美国杨大学,美国1998年博士后研究员。 英国赫尔大学,1992 - 1998年研究助理。K12职业发展计划:DC中的儿科肺部疾病的OMIC。美国国家医学中心,2008-2016 CentroDevistryaçãoemBioversidade E RocursosGenéticos,葡萄牙2006- 2008年高级研究科学家。Genoma LLC,美国2001-2006研究助理。Brigham Young University,美国1999-2001 Fulbright博士后研究员。 美国杨大学,美国1998年博士后研究员。 英国赫尔大学,1992 - 1998年研究助理。Brigham Young University,美国1999-2001 Fulbright博士后研究员。美国杨大学,美国1998年博士后研究员。 英国赫尔大学,1992 - 1998年研究助理。美国杨大学,美国1998年博士后研究员。英国赫尔大学,1992 - 1998年研究助理。英国赫尔大学,1992 - 1998年研究助理。Vigo大学,西班牙荣誉和奖项2018 GWSPH Master教学学院研究员2009 Calouste Gulbenkian Foundation,葡萄牙Vigo大学,西班牙荣誉和奖项2018 GWSPH Master教学学院研究员2009 Calouste Gulbenkian Foundation,葡萄牙
在追求超导性的较高临界温度时,在二维(2D)中的电子带和Van Hove奇异性(2D)中已成为一种潜在的方法,可以根据含义的期望来增强Cooper配对。然而,这些特殊的电子特征抑制了超级流体的超导系统中的超级流体施工,因此在二维超导系统中的过渡(BKT)过渡,导致出现了由于超导导性引起的超导电性流量引起的显着pseudogap法律。在强耦合方案中,发现超流动性的一个与超导差距成反比,这是有助于强烈抑制超级抑制超级流动性的因子。在这里,我们揭示了上述限制在2D超导电子系统中避免使用,具有很强的配对强度与具有较弱的电子配对强度的深带相结合的电子带。由于多播的影响,我们演示了一种类似筛选的机制,该机制绕过了抑制超级流体的抑制。我们报告了通过对两个频率启示元之间的映射耦合调谐和成对的交换耦合,报告了BKT过渡温度大量增强的最佳条件,并大量增强了伪制度。