了解 Si(001) 上替代高 K 电介质的外延生长:应用于氧化镨。《真空科学与技术杂志》美国真空学会 B 官方杂志,微电子处理与现象,2003 年,21,1765。
回想一下位移算符如何变换光子振幅算符,ˆ D ( α )ˆ a † ˆ D † = ˆ a † − α ∗ ,状态可以写成位移和创造的连续
摘要。本文介绍了用于图像识别的深度卷积神经网络训练的性能-能量权衡研究。使用配备 Nvidia Quadro RTX 6000 和 Nvidia V100 GPU 的系统测试了几种具有代表性且广泛采用的网络模型,例如 Alexnet、VGG-19、Inception V3、Inception V4、Resnet50 和 Resnet152。使用 GPU 功率上限,我们发现除了默认配置之外,还可以最小化三个不同的指标:能量 (E)、能量延迟积 (EDP) 以及能量延迟总和 (EDS),从而节省大量能源,EDP 和 EDS 的性能损失较低到中等。具体来说,对于 Quadro 6000 和最小化 E,我们获得了 28.5%–32.5% 的节能效果;对于 EDP,我们获得了 25%–28% 的节能效果,平均性能损失为 4.5%–15.4%;对于 EDS (k=2),我们获得了 22%–27% 的节能效果,平均性能损失为 4.5%–13.8%。对于 V100,我们发现平均节能效果为 24%–33%;对于 EDP,我们获得了 23%–27% 的节能效果,平均性能损失为 13%–21%;对于 EDS (k=2),我们获得了 23.5%–27.3% 的节能效果,平均性能损失为 4.5%–13.8%。
本文研究了不同的用户界面(UI)设计如何影响用户对生成人工智能(AI)工具的信任。我们采用了OZ方法的向导来测试具有不同UI CHATGPT不同UI变化的三种工具的信任水平的实验。来自不同学科的九名志愿大学学生参加了会议。我们使用问卷来评估参与者与每个工具进行交互后以及与所有工具进行交互后对信任的看法。结果表明,参与者之间的信任水平受生成AI的UI设计的影响,尤其是Avatar设计和文本字体。尽管共享相同的文本源,但大多数参与者还是将CHATGPT评为最值得信赖的工具。结果还强调了对话界面在使用生成AI系统建立信任中的重要性,参与者表达了偏爱促进自然和引人入胜的互动的接口。该研究强调了UI对信任的重大影响,并旨在鼓励对生成AIS的更谨慎的信任。
目的 - 本文的目的旨在为“实践中的绩效衡量”进行辩论,重点关注组织参与者如何应对关键绩效指标(KPIS)的“新制度”(KPI)以及KPIS是否按照过渡经济的意图实现。设计/方法论/方法 - 受Schatzki实践理论的认识论教学的启发,本文借鉴了通过面对面访谈,观察和单个组织的文献分析收集的定性数据。发现-KPI是在PK(捷克共和国的制造业问题)中引入的,但被广泛认为是矛盾,无关紧要,自上而下和不现实的。这些导致组织参与者采用务实的方法来拥抱KPI的主观评估和操纵,常识或做出的工作以及肤浅的合规性(象征意义)。研究局限性/含义 - 本文对研究人员很有趣,因为它在独特的经验环境中对绩效测量实践的解释,用于应用于Schatzki启发的实践理论的应用,并激发过渡经济中的新研究议程。
2.1 引言................ ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ................. ... ................................................................................................................................................................................................................................................................. 7 2.3.2 复合样品....................................................................................................................................................................................................................................................................... 8 2.4 废物类型....................................................................................................................................................................................................................................................... 8 2.4 废物类型....................................................................................................................................................................................................................................................... 8 ................................................................................................................................................................................................................. 8 2.5 废弃物特性....................................................................................................................................................................................................... 9 2.5.1 同质性....................................................................................................................................................................................................... 9 2.5.1 同质性....................................................................................................................................................................................................... 9 . ... ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ... ... . . . 10 2.6.2 未容器化的废物. . . . . . . . . . . . . . . . . . 11 2.6.3 表面和碎片. . . . . . . . . . . . . . . . . . . . . . 11 2.7 质量保证考虑因素 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 2.10 分析参数和方法....................................................................................................................................................................................................................12 2.11 代表性抽样方法....................................................................................................................................................................................................................................................13 2.11.1 判断抽样.................................................. ... ....................................................................................................................................................................................................................................................... 14 2.11.4 系统随机抽样....................................................................................................................................................................................................................... 14 2.11.5 横断面抽样....................................................................................................................................................................................................... 14 2.11.5 横断面抽样....................................................................................................................................................................................................... 14 ................................................................................................................................................................................................. 14 2.12 采样位置和数量.................................................................................................................................................................................................................................................................................... 15 2.13 示例站点....................................................................................................................................................................................................................................... 15 2.13 示例站点....................................................................................................................................................................................................................................................... 16 2.14 示例站点....................................................................................................................................................................................................................................................... 16 . ... ... ................................................................................................................................................. 16 2.13.3 场地清单.......................................................................................................................................................................................................................................................... 17
目录 1 自然资源部愿景和使命声明 2 部门描述和组织结构图 3 绩效环境 4 COVID-19 4 人口增长 4 不可再生能源开发和资源税收入 5 联邦伙伴关系和资金 7 环境趋势和自然灾害 8 持续改进 10 DNR 的管理和监管职责 2023-24 财年 13 DNR 在 2022-23 财年的主要成就 14 州长的五大优先事项 16 DNR 极其重要的目标 17 WIG #1:公园和野生动物的可持续资金 17 WIG #2:平衡户外娱乐和保护 17 WIG #3:水计划实施 18 科罗拉多州水资源保护委员会 19 科罗拉多州公园和野生动物 25 复垦、采矿和安全司 29 水资源司 33 能源和碳管理委员会 36 州土地专员委员会(州土地委员会) 38 附录 A:2020-21 财年 SMART 法案绩效评估 42
熔融混合的抽象处理参数(聚合物加工中最常规的技术之一)在所得材料的质量和特性中起着重要作用,尤其是在涉及纳米孔孔的情况下。当前的研究研究了螺丝挤出机的变化处理温度,旋转速度和元素,旨在通过改善PE的两个级别的商用大师的纳米粒子来增强聚乙烯(PE)纳米复合材料的机械性能。该研究投资于聚乙烯中常见兼容剂(MAPE)和剪切力的影响。对机械性能,形态和微观结构的变化进行了比较。结果表明,增加的GNP量导致机械性能的预期连续增加,指的是基础聚合物。MAPE的添加并没有显着改善研究系统的性能。 使用更强的剪切力会对性质产生负面影响。MAPE的添加并没有显着改善研究系统的性能。使用更强的剪切力会对性质产生负面影响。
印度的发电能力为 416.59 吉瓦,是世界第三大电力生产国和消费国。多年来,装机容量稳步增长,2016 财年至 2023 财年的复合年增长率为 5.80%。2023-24 年的发电目标(包括可再生能源)已确定为 17500 亿单位(BU)。即比上一年度(2022-23 年)的实际发电量 1624.158 BU 增长约 7.2%。2023 财年印度的电力消耗增长 9.5% 至 15036.5 亿单位(BU),而 2022 财年为 1374.02 BU。电力领域和可再生能源领域允许通过自动途径进行 100% 的 FDI。
使用硫固体电解质(SES)的全稳态电池(ASSB)是有吸引力的候选物,因为与使用有机溶剂相比,使用液体型锂离子电池(LIBS)比液体型锂离子电池(LIBS)更长。sulfer ses,即使在干燥室等环境中,也会在暴露于水分时会降低其离子电导率并产生有毒的氢硫。然而,到目前为止,尚未完全阐明水分暴露在ASSB细胞性能上的影响。旨在填补这一知识的差距,本文描述了水分对ASSB阳性电极的耐用性的影响,并在这项研究中以露室模拟的空气暴露或暴露于干室模拟的空气中,在这项研究中为-20°C。在细胞耐用性评估后,在阳性电极上进行了二级离子质谱(TOF-SIMS)测量时间,并使用裸露的SE在细胞中观察到了特征降解模式。