人工智能:欧洲和罗马尼亚初创企业格局概述及其决定其成功的因素 Adina SĂNIUȚĂ 国立政治研究和公共管理大学 6-8 Povernei St., Sector 1, 012104 布加勒斯特,罗马尼亚 adina.saniuta@facultateademanagement.ro Sorana-Oana FILIP 罗马尼亚 sorana.filip@gmail.com 摘要 人工智能 (AI) 已融入我们生活的许多方面;在技术驱动的时代,企业使用人工智能来提高生产力,更好地了解消费者行为或通过机器人提供服务。基于 Filip (2021) 为论文进行的在线桌面和试点研究,该研究概述了欧洲和罗马尼亚初创企业的格局以及决定其成功的因素,如产品开发核心团队专业知识、核心团队承诺和业务战略。该研究旨在为进一步的论文创建一个框架,该论文将深入研究罗马尼亚的人工智能初创环境,因为经济期刊预测,鉴于罗马尼亚在这一领域的潜力以及 IT、技术和机器人领域的人才库,该市场将在不久的将来增长。关键词人工智能;初创企业;成功因素。介绍人工智能的一般性讨论人工智能 (AI) 有多种形式,从人脸检测和识别系统、搜索和推荐算法到数字助理、聊天机器人或社交媒体。它的复杂性和动态性很难用一个定义来概括 (Zbuchea、Vidu 和 Pinzaru,2019)。据统计,到 2024 年,全球人工智能市场规模预计将达到 5000 亿美元(Statista,2021a),预计人工智能软件市场收入将达到 3275 亿美元(Statista,2021b)。尽管人工智能在过去几年似乎发展迅速,普及度不断提高,但人工智能的历史可以追溯到 20 世纪 50 年代,当时这一概念诞生于科学家、数学家和哲学家的头脑中。艾伦·图灵是第一个对这一主题进行广泛研究的人,他在他的论文“计算机器和智能”中描述了人工智能一词,以及它的构建和测试(Anyoha,2017,第 1 页)。随着图灵测试的引入,他
摘要。研究相关性是由在难以到达条件下改善对象大小的测量过程的需要决定的。在现代工业环境中,高测量精度对于确保安全和最大化生产过程的效率至关重要,对该主题的研究在快速技术发展和提高生产质量要求的背景下是相关的。该研究旨在评估使用现代计算机视觉方法在困难的技术条件下测量和重建对象的可能性,例如水 - 水功率反应堆的封闭。该研究采用了3D摄影测量方法,包括立体声和多视图立体声的深度,以及运动方法的结构。研究确定,现代计算机视觉方法,特别是机器学习方法,可以成功地用于在难以到达的条件下测量和重建对象。研究表明,在理想条件下,从测量设备到对象的测量精度可以达到接近1 mm的值。同时,与立体声方法的深度相比,多视图立体法揭示了误差的空间分布更大的均匀性。在实践中,在真实照片的条件下,多视图立体声方法最需要准确地确定相机的位置。由于其对摄像机确切坐标的需求较低,立体声方法的深度显示出更好的结果,显示出较小的测量误差。这项研究强调了使用所提出的方法区分
NAVFAC 开放环境修复资源 (OER2):确定 MEC/MPPEH 水下埋藏深度的方法军用弹药被发现在某些水下位置,这是历史处置活动以及实弹训练、测试和其他操作的结果。在水下环境中仍能发挥作用的射弹和其他弹药构成爆炸危险,可能会迁移,使人员接触到这些弹药。这种爆炸危险的管理很复杂,取决于特定地点的考虑因素,例如弹药类型、海洋环境、移动潜力以及人员如何接触和与弹药互动。本次网络研讨会的目的是总结为了解水下环境中弹药的移动性和埋藏而开发的科学。将介绍环境观测、弹药观测技术、移动性和埋藏现场观测、移动与埋藏的物理学以及埋藏的物理过程建模。演示将以将这些知识在现有场地的实际应用结束。 演讲者:Bryan Harre,NAVFAC EXWC 和 Joe Calantoni,美国 NRL 博士 日期:2022 年 11 月 9 日,星期三 时间:太平洋时间上午 11 点 | 美国东部时间下午 2 点 通过以下链接注册参加网络研讨会:https://einvitations.afit.edu/inv/anim.cfm?i=697664&k=0468450F7D53 如果您无法点击链接,请将地址复制并粘贴到您的网络浏览器中。 州际技术与监管委员会 (ITRC) 关于可持续弹性修复 (SRR) 的网络研讨会 极端天气事件会对修复措施保护人类健康和环境的能力产生不利影响。可持续弹性修复 (SRR) 被定义为“清理和再利用危险废物场地的优化解决方案,可限制负面影响、最大化社会和经济效益并增强对日益增加的威胁的抵御能力”。该网络研讨会介绍了一些工具,可帮助将可持续和有弹性的实践融入修复项目中。主题:可持续的弹性修复演讲者:ITRC 日期:2022 年 11 月 17 日时间:太平洋时间上午 10 点 | 美国东部时间下午 1 点通过以下链接注册参加 ITRC 网络研讨会:https://clu-in.org/conf/itrc/SRR/有关更多信息,请查看 ITRC 关于此主题的报告:https://srr-1.itrcweb.org/ RPM 培训活动主题的最后一次征集 RPM 培训主题的最后一次征集:现在到 2022 年 11 月 16 日链接:https://einvitations.afit.edu/inv/anim.cfm?i=699708&k=04684B0E7B5F RPM 培训日期更新:2023 年 3 月 14 日至 16 日*这与原始/预计日期不同* 正在评估场地,活动举办批准将决定最终日期和地点。
在我们的第一种情况下(图1),我们计算了美国墨西哥湾沿岸产生的蓝色氢的排放强度,并以氨向荷兰出口。图表1表明,根据3.38 kgco 2 Eq/kgh 2(附录A和B)的设定阈值,使用保守的假设,在欧盟中,来自欧洲墨西哥湾沿岸的出口产品不会以生命周期为基础,在欧盟的生命周期基础上符合资格,并使用保守的假设,用于上游甲烷泄漏,2 Zere甲烷泄漏,2 Zere-carbon运输率和85%的捕获率和85%的水分生产。准确地考虑上游甲烷泄漏值通常被低估了,尤其是在使用国家平均值时会增加生命周期排放强度值(图1和附录C中的C1)。同样,即使在氢生产节点处有100%的捕获率,蓝色氢在欧盟中也不有资格,因为在现实世界应用中所见(附录C中的表图C2),欧盟的较低碳的捕获率可能远低于85%。
Acknowledgement ................................................................................................................................................................................. 2 Foreword ................................................................................................................................................................ 4 Table of contents ..................................................................................................................................................... 5 Abbreviations and acronyms ................................................................................................................................... 6 List of tables ............................................................................................................................................................ 7 List of figures ........................................................................................................................................................................................... 7 Executive summary ...........................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................
从根本上讲,保护融资工具旨在提供可持续的资金流和/或提供投资回报率。产生现金流量和来自自然投资的回报需要某人愿意支付的价值流。这就是为什么林业和农业企业具有相关商品(例如木材和农作物)对投资者来说更为直接的途径:现金流以及提供投资回报率的能力。生态系统服务,无论是碳固换,洪水调节还是改善的空气质量都与实际成本有关。但是,为了提供投资回报率,金融工具需要使三个不同的群体保持一致:愿意为服务付费的人,从交付中受益的人以及将得到补偿的人。
我们引入了一种新算法,称为 PPA(性能预测算法),该算法可以定量测量神经系统元素对其执行任务的贡献。根据一小组病变中性能下降的数据,该算法可以识别参与认知或行为任务的神经元或区域。它还可以准确预测由于多元素病变导致的性能。新算法的有效性在两个具有元素间复杂相互作用的循环神经网络模型中得到了证明。该算法可扩展并适用于大型神经网络的分析。鉴于可逆失活技术的最新进展,它有可能对理解生物神经系统的组织做出重大贡献,并阐明关于大脑局部计算与分布式计算的长期争论。
以这些进步作为基础,DICOT Pharma现在期待着下一个发展的阶段。即将举行的关键活动包括最终确定和报告2A期研究的结果,该研究预计将于2025年中期完成。2B期研究的准备工作正在进行并行,预期在2026年开始。为了加强公司在市场上的长期立场,国际化的工作和未来商业化的准备工作也得到了加强。对扩大产品组合的新指示的评估和开发也是重点的。
fanconi贫血(FA)是一种可遗传的综合征,其特征是DNA损伤修复缺陷,频繁畸形以及骨髓衰竭,白血病,粘膜头和颈部鳞状细胞癌(HNSCC)的风险显着升高。造血干细胞基因疗法可以预防骨髓衰竭和降低白血病风险,但降低HNSCC风险的粘膜基因疗法仍未受过测试。主要的知识差距包括对基因校正的细胞谱系如何通过口服上皮传播的方式不完整的理解,哪些递送参数对于确保有效的基因校正至关重要。为了回答这些问题,我们扩展了一个基于代理的口服上皮模型,包括将基因校正原位传递到FA细胞以及具有和没有基因校正的细胞谱系之间的竞争动力学。我们发现,只有具有实质性增殖优势的基因校正谱系(抵抗基础层的替代概率)才能扩散在临床上相关的时间表上,并且这些时间≥0。1个谱系最初在校正后几代人的损失风险很高。将基因校正传递到许多细胞中,可以最大程度地减少损失的风险,而在组织内部的许多不同位置的传递可最大化扩散率。为了确定粘膜基因治疗对防止克隆膨胀突变的影响,我们比较了有或没有基因校正的模拟组织切片中TP53突变的预期负担。我们发现,当FA细胞具有升高的基因组不稳定性或TP53依赖性增生优势时,基因校正可以大大减少促肿瘤突变的积累。该模型说明了计算框架确定治疗成功的关键决定因素,以实现实验优化并支持新颖和有效的基因治疗应用。
