erovskite太阳能电池(PSC)成为新兴光伏技术的领先者,并吸引了各个学科的研究人员的大量关注。1报告的功率转换官员(PCES)急剧上升,2019年达到25.2%的认证价值。2这样的技术进步的速度可以与此类半导体的非凡光电特性有关,包括高吸收率,大载体差异长度,混合离子/电子电导率,以及在这些材料的细微材料中,具有特殊的缺陷化学作用。3 - 7此外,可以通过低温退火步骤对perovskite polycrystalline纤维进行溶液处理,从而为工业应用打开了有吸引力的新价值主张。对能够造成新的,破坏解决方案的薄膜PV技术引起了人们的兴趣,例如简单和低成本的制造,高机械功能和高特定功率(具有高功率输出的轻量级)。8然而,长期稳定性仍然是钙钛矿技术大规模利用的主要问题之一。9,10
erovskite太阳能电池(PSC)近年来取得了前所未有的进展,最高的认证效率达到了25%以上1。为了进一步提高PSC的效率和过度提高单一结构太阳能电池的详细平衡理论限制,通常通过与成熟光伏技术的宽带(WBG)Perovskites进行整合来应用串联太阳能电池,例如CrystallineIne,例如Crystallineine Silicon(C-SI),Copper(C-SI),Copper(copper),copper(in,ga)2(cigs per)2(cigs per)2 - 4或其他cig pers peh of pers pers peh of peacs 2 - 4或其他。在这些基于钙钛矿的串联光伏技术中,Perovskite – Silicon串联太阳能电池已成为一种易于商业化的,报告的有效性超过29%(参考文献8)。单片的两末端钙钛矿 - 锡的串联设备仍然主要基于前侧和后方胶片和后侧胶合晶体C-SI的基础,不幸的是,由于光反射9造成的光电损失很大。双面纹理的C-SI具有增加的光捕捞,可为钙钛矿 - 硅串联设备提供高效的上限10-12。第一个完全纹理的钙钛矿 - 丝状细胞具有前纹理的质地,其尺寸最高为6 µm,其中WBG钙晶硅质的质感硅上的硅酸盐是通过蒸发和溶液涂层的组合结合形成的。最近已证明在硅前表面上的质地较小或以下,具有可比的抗反省特性,可以使用更简单的基于单步分解的基于单步的叶片涂料或自旋涂料或旋转甲基ODS 11、11、12,从而实现了完全纹理的perovskite-silicon串联装置。然而,所报道的钙钛矿 - 硅串联太阳能电池的效率仅达到25-26%,低于双面纹理的硅结构的全部潜力。比在平坦硅11-14上产生的串联电池的低功率转换效率(PCE)主要由较小的开路电压(V OC)和填充因子更小。在技术上仍然很难使用溶液方法沉积钙钛矿层以覆盖纹理的硅,甚至