摘要:磷酸激光(PL)玻璃的加工(研磨,抛光)涉及在两个截然不同(空间)尺度上的材料去除。在这项研究中,通过在干燥和潮湿的条件下针对SIO 2反地面摩擦玻璃来研究PL玻璃的纳米和宏观文献特性。结果表明,PL玻璃/SIO 2对的摩擦在纳米和宏观尺度上具有相反的趋势。在纳米级,潮湿空气中的摩擦系数(COF)远高于干燥空气中,这归因于界面吸收的水膜的毛细血管效应。另一方面,在宏观上,潮湿空气中的COF低于干空气,因为与水相关的机械化学磨损使磨损的表面不太容易受到裂纹的影响。在两个尺度上,潮湿的空气比干空气更好地促进了PL玻璃的材料,因为应力增强的水解加速了玻璃中的材料解释过程。此外,材料被拆卸对宏观上的接触压力更为敏感,因为在宏观上拆除材料时会发生更强的机械相互作用,并具有多覆盖触点模式。在宏观上,与干空气相比,材料去除对潮湿空气中的接触压力更敏感。几乎所有的机械能都用于去除潮湿的空气中的材料,并且大多数机械能用于在干空气中的PL玻璃中产生裂缝。这项研究的结果可以帮助优化光眼镜的多尺度表面处理。关键字:磷酸盐玻璃;摩擦;穿;水;水解;跨化学
执行编辑:Bob Horan 编辑总监:Sally Yagan 主编:Eric Svendsen 产品开发经理:Ashley Santora 编辑助理:Jason Calcano 编辑项目经理:Kelly Loftus 高级营销经理:Anne Fahlgren 高级总编辑:Judy Leale 高级制作项目经理:Karalyn Holland 高级运营专家:Arnold Vila 运营专家:Cathleen Petersen 高级艺术总监:Janet Slowik 封面设计师:Jill Lehan 封面插图/照片:Merve Poray/Shutterstock 图片经理、权利和许可:Hessa Albader 媒体编辑:Denise Vaughn 媒体项目经理:Lisa Rinaldi 排版:Azimuth Interactive, Inc. 全方位服务项目管理:Azimuth Interactive, Inc. 印刷厂/装订厂:Courier/Kendallville 字体:10.5/13 ITC Veljovic Std Book
12. 电学性质................................................................................................321 12.1 简介...............................................................................................321 12.2 金属、绝缘体和半导体:能带理论....................................321 12.2.1 金属.......................................................................................324 12.2.2 半导体.................................................................................325 12.2.3 绝缘体.......................................................................................328 12.3 电导率的温度依赖性....................................................................328 12.3.1 金属.......................................................................................329 12.3.2 本征半导体.......................................................................330 12.4 非本征(掺杂)半导体的性质....................................................335 12.5 使用非本征(掺杂)半导体的电气设备.....................................336 12.5.1 p,n 结.....................................................................................336 12.5.2 晶体管................................................................................342 12.6 电介质...............................................................................................344 12.7 超导性...............................................................................................347 12.8 温度测量:教程��������������������������������������������������������������������������������352
资源人员专家教师将来自国际机构、知名学术机构、印度理工学院马德拉斯分校、印度理工学院孟买分校、印度政治经济学学院维扎格分校、印度理工学院瓦朗加尔分校和印度理工学院卡纳塔克分校以及来自霍尼韦尔、西门子和横河电机的行业/公司专业人士。 参与资格 FDP 更具优势,因此向 AICTE 认可机构的教师、研究生和博士研究人员、行业/研发组织/顾问人员、主办机构的参与者开放。 课程费用 没有注册费,但必须进行注册确认。 出勤率至少为 80%、考试成绩合格率为 70% 并提交了对参加 FDP 的反馈的参与者颁发证书。有关更多详细信息,请参阅此链接 https://atalacademy.aicte- india.org/FAQs 席位数量:最低 100 人 申请方式:参与者必须通过 AICTE ATAL 注册链接申请 https://atalacademy.aicte-india.org/signup 选择标准:按照 AICTE ATAL 指南和先到先得的原则。 联系方式 TK Radhakrishnan 博士,教授(HAG),化学工程系。手机号码:9488451677 K. Sankar 博士,助理教授,化学工程系手机号码:7427960065 电子邮件:radha@nitt.edu,地址:化学工程系,Tanjore-Trichy 高速公路,Thuvakudi,国家理工学院 Tiruchirappalli – 620015,泰米尔纳德邦,印度
立场摘要Ifakara Health Institute(IHI)与卫生部通过国家疟疾控制计划,总统办公室,地区管理局和地方政府以及国家医学研究所(NIMR)共同实施了Malararia Malararia在Tanzania内部(MSMT2)项目的第二阶段。同时,IHI正在寻求一名精力充沛,熟练的后博士后研究员,以加入我们的团队,进行一项尖端的研究项目,专注于MSMT项目的第二阶段。成功的候选人将与多学科研究人员,公共卫生专业人员以及本地和国际利益相关者紧密合作,以增强和规模,以增强和扩展本地能力,以基于该项目的目标,以支持分子,遗传,基因组和数据分析,以支持疟疾分子监测和其他要求。该项目最终将支持政策变化,并为坦桑尼亚的疟疾控制和消除提供明智的决策。
药物-靶标相互作用预测 (DTI) 在药物发现和临床应用等各种应用中都至关重要。DTI 预测中广泛使用的输入数据有两个视角:内在数据表示药物或靶标的构造方式,外在数据表示药物或靶标与其他生物实体的关系。然而,对于某些药物或靶标,尤其是那些不受欢迎或新发现的药物或靶标,输入数据的两个视角中的任何一个都可能很稀缺。此外,特定相互作用类型的真实标签也可能很稀缺。因此,我们提出了第一种方法来解决输入数据和/或标签稀缺情况下的 DTI 预测。为了使我们的模型在只有一个输入数据视角可用时发挥作用,我们设计了两个独立的专家分别处理内在数据和外在数据,并根据不同的样本自适应地融合它们。此外,为了使这两个视角相互补充并弥补标签稀缺问题,两个专家以相互监督的方式相互协同,以利用大量未标记数据。在输入数据稀缺性和/或标签稀缺性不同的 3 个真实数据集上进行的大量实验表明,我们的模型显著且稳定地优于现有技术,最大改进为 53.53%。我们还在没有任何数据稀缺的情况下测试了我们的模型,它也优于当前方法。代码可在 https://github.com/BUPT-GAMMA/MoseDTI 获得。
目标:这项研究的目的是提高我们对插入侧壁耳蜗电极阵列涉及的机械的理解。设计:三名经验丰富的外科医生进行了一系列30个插入实验。根据已建立的软手术指南,在先前验证的人工颞骨模型中进行了实验。使用体外设置使我们能够全面评估相关参数,例如插入力,当经压力内压力和精确的电极阵列在受控且可重复的环境中。结果:我们的发现表明,在插入的后半部分中,强烈的后偏压瞬变更频繁,并且重新填充电极阵列是这种现象中的一个明显因素。对于选择最佳插入速度,我们表明,平衡缓慢运动以限制速度限制持续时间的缓慢运动至关重要,以限制震颤引起的压力尖峰,这挑战了一个普遍的假设
1. 简介 1.1. 国家绿色氢能任务(以下简称“任务”)于 2023 年 1 月 4 日由政府启动,拨款 19,744 千万卢比,旨在将印度打造为绿色氢能 (GH2) 及其衍生物生产、使用和出口的全球中心。它将为印度通过清洁能源实现 Atmanirbhar(自力更生)的目标做出贡献,并为全球清洁能源转型提供借鉴。该任务将实现经济大幅脱碳,减少对化石燃料进口的依赖,并使印度在绿色氢能领域占据技术和市场领导地位。根据该任务以及其他举措,新再生能源部 (MNRE) 提议实施试点项目,用绿色氢能及其衍生物替代化石燃料和基于化石燃料的原料。 1.2.印度新再生能源部于 2023 年 8 月 18 日发布了第 353/35/2022-NT 号 OM 法令,定义了绿色氢标准,并制定了生产绿色氢的具体标准。该定义将温室气体排放(非生物源)的阈值设定为 2 kgCO ₂ eq /kg H 2,以满足第 7 节中定义的系统边界要求。该阈值以过去 12 个月的平均值计算。1.3. 该部还计划制定详细的方法,用于绿色氢及其衍生物的测量、监测、报告、现场核查和认证。它已指定能源效率局 (BEE) 为负责认证绿色氢项目监测、核查和认证机构的主管机构。1.4. 根据这些要求,印度新再生能源部 (MNRE) 目前正在国家绿色氢能使命 (NGHM) 下指定一项认证计划。该计划称为印度绿色氢能认证计划 (GHCI)。
摘要 - 这项工作介绍了几何空间信息树(GSIT),这是一个新颖的框架,通过将超平面分配给实体并降低下属节点的维度来构建层次关系。框架中的成员通过内部产品计算进行验证,简化执行步骤,同时跨越不同深度的层次结构进行身份验证。GSIT利用超平面的几何特性有效地编码和管理分层信息。它适用于车辆网络公共密钥基础架构(PKI),增强隐私保护,化名证书管理和多级可追溯性。此方法为管理安全的通信系统中的复杂层次结构提供了可扩展且灵活的解决方案。
妊娠期缺铁对孕产妇和胎儿的不良影响仍然是一个全球性的健康问题,影响着 10 - 90% 的孕妇 ( 1 ),因为铁是一种有害的补充剂。根据世界卫生组织的建议,每日口服补铁(每日摄入 30-60 毫克元素铁)应成为常规产前护理的一部分,以避免不良的孕产妇和胎儿结局,包括宫内生长受限、早产以及新生儿和围产期死亡 ( 1 ) ( 2 )。然而,当孕妇摄入过量的铁时,很容易对新生儿和母亲造成潜在的伤害,因为新兴研究表明,生命早期造血期间接触高铁可能会诱发贫血,对发育产生重大影响,并可能降低促红细胞生成素敏感性,从而限制红细胞生成 ( 3 ) ( 4 ) ( 5 )。血清铁蛋白是一种主要的铁储存蛋白,是广泛使用的全身铁储存标记物,具有纳米大小的水合氧化铁核心和笼状蛋白质外壳,含有 20% 的铁。最近越来越多的研究发现,血清铁蛋白浓度较高也与妊娠期代谢紊乱有关,如妊娠期糖尿病 (GDM)、血清脂类异常、胰岛素抵抗 (IR),胰岛素抵抗通过稳态模型评估-胰岛素抵抗 (HOMA-IR)、稳态模型评估-胰岛素分泌 (HOMA-IS) 和稳态模型评估-b 细胞功能 (HOMA-b) 等指标计算 (6)(7)(8)(9)。相反,还有其他相互矛盾的研究表明,补铁不会增加 GDM 的风险,但就妊娠结局而言对母亲和胎儿大有裨益 (10)(11)。考虑到研究的缺乏且结果相互矛盾,为了评估中国妊娠人群血清铁蛋白与代谢紊乱之间的关系,我们利用上海市第一人民医院孕妇的流行病学数据,探讨血清铁蛋白水平与妊娠期糖尿病、血脂异常、胰岛素抵抗等代谢紊乱患病率之间的关联。