多年的工具和资源开发使一些模型植物-病原体系统的研究受益。但对于绝大多数具有经济和营养价值的植物来说,情况并非如此,从而造成了作物改良的瓶颈。由 Xanthomonas axonopodis pv. manihotis (Xam) 引起的木薯细菌性枯萎病 (CBB) 是所有种植木薯 (Manihot esculenta Crantz) 的地区的重要疾病。本文,我们描述了可用于可视化体内 CBB 感染的初始步骤之一的木薯的开发。利用 CRISPR 介导的同源定向修复 (HDR),我们生成了在 CBB 易感性 (S) 基因 MeSWEET10a 的 3' 端无疤痕插入 GFP 的植物。随后在转录和翻译水平上可视化了转录激活因子样 (TAL) 效应物 TAL20 对 MeSWEET10a-GFP 的激活。据我们所知,这是首次在木薯中通过基因编辑展示 HDR。
“普通”或“ True”芋头(Colocasia esculenta)是一种草本植物,地下茎肿胀。它是最古老的农作物之一,它仍然是太平洋,东南亚,西非,西非和加勒比海的相对肥沃和高降落环境中可持续生计的关键组成部分,在那里它具有特殊的文化,饮食和经济重要性。在全球范围内,芋头在主食作物中排名第十四,在大约200万公顷土地上全球生产了900万吨。在太平洋特别重要的是,它被认为是每餐的重要组成部分。Corm-烘烤,烤或煮沸 - 叶子被吃掉,后者是维生素,尤其是叶酸的重要来源。除了其在饮食中的重要性外,芋头的种植还紧密地融入了社会和文化生活中。它在正式场合被用作礼物,并为种植者的身份做出了强烈的贡献。18
对一些模型植物 - 病原系统的研究已从多年的工具和资源开发中受益。对于绝大多数经济和营养重要的植物而言,情况并非如此,从而产生了农作物改善的瓶颈。木薯细菌疫病(CBB),由xanthomonas axonopodis PV引起。manihotis(XAM)是木薯(Manihot esculenta crantz)种植的所有地区的重要疾病。在这里,我们描述了木薯的开发,可用于可视化体内CBB感染的初始步骤之一。使用CRISPR介导的同源指导修复(HDR),我们在CBB易感性的3'端(S)基因Mesweet10a生成了含有GFP的植物。随后在转录和翻译水平上可视化了转录激活剂(TAL)效应tal20的Mesweet10a-GFP。据我们所知,这是通过木薯中的基因编辑进行HDR的第一个证明。
Anwar Aliya Fathima、Mary Sanitha、Leena Tripathi、Samwel Muiruri (2022) 木薯(Manihot esculenta)的食品和生物能源双重用途:综述。粮食和能源安全(已接受)Samwel K. Muiruri、Valentine O. Ntui、Leena Tripathi、Jaindra N. Tripathi (2021) 提高木薯(Manihot esculenta)耐旱性的机制和方法,当代植物生物学,28,100227,2214-6628。https://doi.org/10.1016/j.cpb.2021.100227。 Alice Lunardon、Samwel Muiruri Kariuki、Michael J. Axtell (2021) 番茄和本氏烟中瞬时引入的转基因中多顺反子人工微小 RNA 和反式 siRNA 的表达和加工。植物杂志,4,106,1087-1104。DOI:https://doi.org/10.1111/tpj.15221 Ogden, Aaron J.、Jishnu J. Bhatt、Heather M. Brewer、Jack Kintigh、Samwel M. Kariuki、Sairam Rudrabhatla、Joshua N. Adkins 和 Wayne R. Curtis 2020。“干旱和恢复期间的韧皮部渗出物蛋白谱揭示了番茄维管系统中的非生物应激反应”国际分子科学杂志 21,号。 12:4461。https://doi.org/10.3390/ijms21124461 Muiruri, KS、Britt, A.、Amugune, NO、Nguu, EK、Chan, S. 和 Tripathi, L. (2017)。在栽培三倍体和野生二倍体香蕉(芭蕉属)中表达着丝粒特异性组蛋白 3 (CENH3) 变体。植物科学前沿,8, 1034。DOI:10.3389/fpls.2017.01034 Muiruri, KS、Britt, A.、Amugune, NO、Nguu, E.、Chan, S. 和 Tripathi, L. (2017)。利用线粒体和核标记进行香蕉显性等位基因系统发育和组成亚基因组单倍型推断。基因组生物学与进化,9(10),2510-2521 10.1093/gbe/evx167 。Tripathi, JN、Ntui, VO、Ron, M.、Muiruri, S. K.、Britt, A. 和 Tripathi, L. (2019)。利用 CRISPR/Cas9 编辑香蕉属 B 基因组中的内源性香蕉条纹病毒,克服了香蕉育种中的一大难题。通讯生物学,2(1),46。https://doi.org/10.1038/s42003-019-0288-7
我,Juan Pablo Arciniegas Vega,已成年,现居住在圣地亚哥-德卡利,公民身份号码为比亚维森西奥市第 1121914279 号,我以论文、专著或学位论文作者的身份,撰写了题为“从木薯(Manihot esculenta Crantz)组织化胚胎发生结构的分离原生质体中再生植物的协议”的论文、专著或学位论文,在此以数字或电子格式(CD-ROM)交付副本及其附件(如适用),并授权洛斯亚诺斯大学按照 1982 年第 23 号法律、1993 年第 44 号法律、1993 年第 351 号安第斯决定、1995 年第 460 号法令和其他有关此事的一般规定,以各种形式使用和利用,以印刷和数字格式,或已知或未知的格式,全部或部分地复制、公开传播、编辑和分发我的学位作业或论文。
摘要木薯(Manihot esculenta crantz)是一种关键的淀粉根作物,在全球范围内就粮食作物的意义排名第六,并为居住在热带地区的8亿个人提供了维持。超出其作为食物来源的关键作用,木薯也是生物材料的基本水库。木薯主要在肥沃的,低雨后的环境中蓬勃发展,面临着各种挑战,包括对病毒疾病的易感性,快速的后后恶化以及与氰基糖苷相关的潜在毒性。用于增强或引入特定性状的常规育种方法,尽管有效,但尤其是耗时的,促使人们探索了替代技术。基因组编辑工具,以CRISPR/CAS9系统为例,由于其简单性,成本效益和效率而提供了有希望的途径。这项全面的评论批判性地研究了基因组编辑在木薯中的应用,重点是增强关键特征,例如淀粉质量,氰化物排毒和对疾病的耐药性。此外,它精心探讨了该领域遇到的挑战,提供潜在的解决方案,并调查了先进的技术,包括基础编辑和质量编辑,这对推进木薯育种的努力保持了巨大的希望。
木薯 (Manihot esculenta Crantz) 是一种富含淀粉的块根作物,养活了全世界热带和亚热带地区超过 10 亿人。然而,这种主食会产生有毒的氰化物,需要经过加工才能安全食用。过量食用加工不充分的木薯,再加上缺乏蛋白质的饮食,会对神经退行性产生影响。由于木薯的杂合性质,通过常规育种降低氰化物含量存在问题;重组通常会破坏克隆繁殖品种的一系列理想性状。为了降低木薯中的氰化物水平,我们使用 CRISPR 介导的诱变技术来破坏细胞色素 P 450 基因 CYP79D1 和 CYP79D2,这两个基因的蛋白质产物可催化氰化物葡萄糖苷生物合成的第一步。敲除这两个基因可消除木薯品种 60444 和西非农民偏爱的品种 TME 419 的叶子和块茎中的氰化物。虽然单独敲除 CYP79D2 可显著减少氰化物,但诱变 CYP79D1 则不会,这表明这些旁系同源物的功能已经出现分化。我们的工作表明,木薯基因组编辑可提高食品安全、降低加工要求并带来环境效益,这些优势可轻松扩展到其他农民偏爱的品种。
摘要 芋头 ( Colocasiae esculenta ) 是撒哈拉以南非洲种植的第三大块根和块茎作物,仅次于木薯和山药,但其全球产量受到疾病——芋头叶枯病 (TLB) 的严重威胁。这种疾病与卵菌 P.colocasiae 有关,它会攻击植物的每个部分,尤其是当它是易感品种时。超过 80% 的芋头损失是由于 TLB 的影响,这也是许多种植者忽视这种作物的原因,导致受影响地区的饮食模式和种植系统发生重大变化。缺乏用于芋头研究的资金也是导致作物被忽视的一个主要因素。更好地了解受影响地区的 P.colocasiae 分离株,可以更好地指导疾病管理策略,这些策略多年来包括使用抗性品种、化学和生物控制以及栽培实践。从计算机数据库中检索了将 TLB 描述为对芋头生产的严重威胁的文献。本文概述了该病的起源、流行病学和对种植的影响,并强调了生物技术为减少这种被忽视的热带粮食作物的损失提供的新机会。对许多人来说,这种古老的作物具有文化意义,解决 TLB 祸害至关重要。
通讯作者:Tolumoye J. Tuaweri摘要这项研究是关于使用绿色抑制剂和减肥方法对海水和土壤环境中低碳钢C-1026行为的腐蚀。绿色植物提取物是香气叶(SL)(ocimum gratissimum),木薯叶(Cl)(manihot esculenta)和neem叶(nl)(azadirachta indica)。添加了一定数量的菠萝汁,以增强对MS表面的抑制作用。研究的参数包括体重减轻,腐蚀速率,抑制效率,pH分析,Brinell硬度测试,表面粗糙度,扫描电子显微镜,电力动力学极化测量和傅立叶变换红外光谱。研究表明,绿色植物提取物在低碳钢C-1026上表现出良好的抑制效率。neem叶被认为具有最大抑制效率。添加绿色植物抑制剂,腐蚀速率降低。 此外,它们影响了低碳钢表面的硬度和表面粗糙度。 结果表明,绿色植物中的化学复合物在石油和天然气管道上具有一些抑制性。 关键词:化学复合物,腐蚀,腐蚀抑制剂,碳钢,绿色植物叶。腐蚀速率降低。此外,它们影响了低碳钢表面的硬度和表面粗糙度。结果表明,绿色植物中的化学复合物在石油和天然气管道上具有一些抑制性。关键词:化学复合物,腐蚀,腐蚀抑制剂,碳钢,绿色植物叶。
木薯(Manihot esculenta)是高于大米和玉米的热带碳水化合物食物的第三大来源。也称为Mandioca,Manioc,Yuca或Tapioca。这是许多热带和亚热带发展中国家,尤其是在西非的主要主食根作物。在90多个国家/地区成长,在全球范围内,它是人类饮食中第六个最重要的能源来源,并且是大米,糖和玉米/玉米之后的第四个能源供应商(Heuberger,Heuberger,2005年)。研究人员已经开发了几种木薯的加工方法,目的是降低其毒性,同时将高度易腐的根转换为可以被视为更稳定的产品的产品。发酵,阳光干燥,浸泡以及干燥或烘烤的过程已被报道为过程(Irtwange&Achimba,2009年)。两种不同类型的木薯是甜木薯(Manihot Dulcis)和苦木薯(Manihot esculenta)。苦木薯与高水平的氰化糖苷有关。甜木薯被认为没有太多的氰化物。在木薯的局部分类中,有些品种被视为“甜”(即无毒理)。这导致消费者对应用简单治疗的自满情绪,以在消耗块茎之前降低氰化物水平。因此,缺乏对氰化物中毒的潜在危险的认识,这是消耗生木薯块茎的原因(Cornelius,Robert,Gaymary,James&Sakurani,2019年)。在木薯中,主要的氰化糖苷是Linamarin。这是因为研究表明,在某些地区,尤其是在东非,甚至那些被认为是人类灾难的木薯品种也是如此(Mburu,Njue&Sauda,2011年)。因此,根据Osuntokun(1994)的长期消费少量氰化物会引起严重的健康问题,例如热带神经病。Alitubeera,Eyu,Benon,Alex&Bao-Ping(2019)报告说,2017年涉及乌干达98人的氰化物中毒爆发,其中发生了两起死亡案件。加工不足也会导致高氰化物的暴露,这会导致严重疾病(例如Jorgensen,Bak,Busk,Sorensen,Sorensen,Olsen,Puonti-Kaerlas&Moller,2005年)。这种抗营养素的存在通过木薯中的野马酶通过水解减少。已经采用了几种加工方法来降低木薯根的毒性,并同时将高度易腐的根转化为更稳定的产品。这些包括晒干,浸泡和发酵,然后干燥或烘烤(Irtwange&Achimba,2009)。传统育种者已经产生了具有低氰化物潜力的木薯品种,但它们并未成功提供完全没有氰化糖苷的木薯品种(Ngudi,Kuo&Lambien,2003)。也少量存在的是lotaustralin(甲基中胺)。也存在酶的Linamarase酶。Linamarin被Linamarase催化,将其迅速水解为葡萄糖和丙酮氰基羟化蛋白。它还将lotaustralin水解为相关的氰氢蛋白酶和葡萄糖。丙酮氰基氢蛋白在中性条件下分解为丙酮和氰化氢(食品标准澳大利亚新西兰,2005年)。在木薯被食用的一些热带国家中,很难分析木薯中氰化物的数量,因为执行测定程序所需的设施不容易获得,并且获得准确的分析方法是另一个困难领域。