哺乳动物基因组编码了近 50 种 ATP 结合盒 (ABC) 转运蛋白。这些转运蛋白的特点是保守的核苷酸结合和水解(即 ATPase)结构域,以及将各种底物类别(离子、小分子代谢物、外来生物、疏水性药物甚至多肽)定向转运进或转运出细胞或亚细胞器。尽管 ABC 转运蛋白的免疫功能才刚刚开始被揭示,但新兴文献表明这些蛋白质在 T 淋巴细胞的发育和功能中发挥着未被充分重视的作用,包括在感染、炎症或癌症反应过程中出现的许多关键效应子、记忆子和调节子集。一种特别的转运蛋白 MDR1(多药耐药性-1;由人类的 ABCB1 基因座编码)已成为免疫调节中的新参与者。尽管 MDR1 仍被广泛视为肿瘤细胞中的一种简单药物效应泵,但最近的证据表明,这种转运蛋白在增强活化 CD4 和 CD8 T 细胞的代谢适应性方面发挥着关键的内源性作用。本文,我们总结了目前对 ABC 转运蛋白在免疫调节中的生理功能的理解,重点关注 MDR1 的抗氧化功能,这种功能可能决定抗原特异性效应和记忆 T 细胞区室的大小和库。虽然关于 ABC 转运蛋白在免疫生物学中的功能仍有许多需要了解的地方,但已经清楚的是,它们代表着一片肥沃的新天地,既可用于定义新的免疫代谢途径,也可用于发现可用于优化对疫苗和癌症免疫疗法的免疫反应的新药物靶点。
● 到 2050 年,欧洲的累计电池需求量将比 2022 年高出 100-200 倍,相当于高达 2000 万吨的电池金属(而 2022 年的石油消耗量为 1.7 亿吨油当量)● 即使在一切如常的情况下,欧洲的需求也远远低于全球储量,相当于已知全球锂和镍储量的 11%、钴储量的 10% 和锰储量的 1%。● 使用更小的电池、减少私家车行驶里程和采用创新的化学物质(如钠离子)将使中心(或“加速”)情景下所需的电池金属量与一切如常相比减少三分之一以上。在最激进的情景下,这一数字会下降一半。● 更小的电池是带来最大影响的单一因素,或者在所有情景下原材料最多可减少四分之一。● 在供应受限的世界中,使用更小的电池和汽车不仅是环境要求,也是合理的经济和产业政策。 ● 在欧洲、国家和地方层面采取强有力的政策是关键,包括全欧盟范围内转向更小、更实惠、资源更丰富的轻型电动汽车的战略。
宏基因组新一代测序 (mNGS) 是诊断传染病的一种变革性方法,它利用无偏高通量测序直接检测和表征临床样本中的微生物基因组。本综述全面概述了 mNGS 技术的基本原理、测序工作流程和平台。该方法的骨干包括对从不同样本类型中提取的总核酸进行散弹枪测序,能够在不了解传染源的情况下同时检测细菌、病毒、真菌和寄生虫。mNGS 的主要优势包括它能够识别稀有、新型或不可培养的病原体,与传统的基于培养的方法相比,可以更全面地了解微生物群落。尽管有这些优势,但数据分析复杂性、高成本以及需要优化样品制备方案等挑战仍然是重大障碍。mNGS 在各种全身性感染中的应用凸显了其临床实用性。本综述中讨论的案例研究说明了其在诊断呼吸道感染、血流感染、中枢神经系统感染、胃肠道感染等疾病方面的功效。通过快速识别病原体及其基因组特征,mNGS 有助于及时和有针对性的治疗干预,从而改善患者的治疗结果和感染控制措施。展望未来,mNGS 在传染病诊断领域的前景看好。生物信息学工具和测序技术的进步有望简化数据分析、提高灵敏度和特异性并缩短周转时间。与临床决策支持系统的集成有望进一步优化 mNGS 在常规临床实践中的利用。总之,mNGS 代表了传染病诊断领域的范式转变,为微生物多样性和发病机制提供了无与伦比的见解。尽管挑战依然存在,但持续的技术进步具有巨大的潜力,可以巩固 mNGS 作为现代医学武器库中的关键工具的地位,使临床医生能够精确、快速、全面地检测病原体。
耐粘蛋白是在动物中发现的突出的抗病毒蛋白。耐蛋白的主要功能是生产3'-deoxy -3',4' - 二维德罗 - 酪氨酸三磷酸(DDHCTP),这是一种参与病毒RNA合成的抑制性核苷酸。哺乳动物模型中的研究表明,DDHCTP会干扰代谢蛋白。但是,该假设尚未在Telest中进行检验。在这项研究中,测试了耐毒素在调节病毒出血性败血病毒(VHSV)感染中的代谢改变中的作用。被VHSV感染时,viperin - / - 鱼的死亡率较高。vhsv拷贝数和NP基因的表达在耐蛋白 - / - 芬中显着增加。代谢基因分析显示,苏打,HIF1A,FASN和ACC表达的显着差异,表明它们对代谢的影响。在VHSV感染期间,斑马鱼幼虫中的胆固醇分析表明,胆固醇的产生显着上调,没有耐耐蛋白。对ZF4细胞的体外分析表明,脂质产生的降低显着降低,并且具有耐毒素过表达的活性氧(ROS)产生的显着上调。中性粒细胞和巨噬细胞的募集显着调节。因此,我们证明了耐蛋白在干扰VHSV感染过程中的代谢改变中起作用。
“最终出版物可在link.springer.com上获得” doi:10.1007/s00216-015-8506-8分析和生物分析化学407(10):2887-2898
Stachydrine,也称为脯氨酸甜菜碱,是传统中国草药leonurus japonicus的重要组成部分,以其显着的药理作用而闻名。广泛分布在Leonurus和Citrus Aurantium等植物中,以及各种细菌,Stachydrine在动物,植物和细菌界中均提供关键的生理功能。本综述旨在总结一下地下室在解决心血管疾病和脑血管疾病,神经保护,抗癌活性,子宫调节,抗炎性反应,肥胖管理,肥胖管理和呼吸道疾病方面的各种作用和机制。值得注意的是,硬化剂通过多种途径表现出心脏保护作用。此外,其抗癌特性抑制了许多癌细胞类型的增殖和迁移。具有对子宫功能的双向调节作用,Stachydrine对妇产科和妇科相关疾病有希望。在植物中,硬化氨酸用作二次代谢产物,有助于调节渗透压调节,氮固定,耐药性和应激反应。同样,在细菌中,它起着至关重要的渗透保护作用,促进适应高渗透压环境。本综述还涉及关于水疗合成代谢代谢的持续研究。虽然生物合成途径仍未完全理解,但代谢途径已建立了良好的。对石质的生物合成的更深入的了解具有阐明其作用机理,推进植物二次代谢,增强药物质量控制并促进新药物开发努力的重要性。
环境变化和人口增长是农作物生产和整个粮食安全的主要问题。为了解决这个问题,研究人员一直致力于改良谷物和豆类,并在本世纪初取得了相当大的进展。然而,如果没有蔬菜和水果,谷物和豆类加在一起不足以满足人类生活的饮食和营养需求。生产优质的蔬菜和水果极具挑战性,因为它们易腐烂、保质期短,而且在收获前后会遇到非生物和生物压力。通过引入外来基因来生产转基因作物,可以生产出优质、延长保质期和抗逆性、改变开花和果实成熟的时间的转基因作物,这种方法非常成功。然而,一些生物安全问题,如转基因异交风险,限制了它们的生产、营销和消费。现代基因组编辑技术,如 CRISPR/Cas9 系统,在这种情况下提供了一个完美的解决方案,因为它可以生产无转基因的转基因植物。因此,这些基因编辑植物可以轻松满足农作物生产和消费的生物安全规范。本综述重点介绍了 CRISPR/Cas9 系统在成功产生非生物和生物胁迫抗性方面的潜力,从而提高了蔬菜和水果的质量、产量和整体生产力。
2.委员会由 、 和 组成,于 2023 年 6 月 7 日审查了请愿人的错误和不公正指控,并根据其规定,决定根据现有的记录证据采取以下纠正措施。委员会审议的文件材料包括附件、请愿人海军记录的相关部分以及适用的法规、条例和政策。