本工作采用了一种创新技术——电弧增材制造 (WAAM),这是一种定向能量沉积技术,用于裂纹钢部件的疲劳强化。在高周疲劳载荷条件下测试了不同的带有中心裂纹的钢板,包括参考板、用 WAAM 修复的具有沉积轮廓的钢板以及用 WAAM 修复并随后进行加工以降低应力集中系数的钢板。进行了相应的有限元模拟,以更好地理解 WAAM 修复的机理。参考板上现有的中心裂纹在 94 万次循环后扩展并导致断裂,而两块 WAAM 修复板中的中心裂纹并未扩展,这是由于净横截面积增加以及沉积过程引起的压应力。然而,在第二块钢板中,由于局部应力集中,在 WAAM 轮廓根部出现了新的裂纹,疲劳寿命达到了 220 万次循环(是参考板的 2.3 倍)。另一方面,第三块钢板由于加工轮廓光滑,经受了 900 多万次疲劳循环,没有出现明显的退化。这项研究的结果表明,WAAM 修复技术在解决钢结构疲劳损伤方面具有巨大潜力。
ecent di sc o of tal s tal s up h y d r d r d i d i d i d e es p r o v id e a n e n e n e n e w r om om to r oom -te m p eary tu e e e e e e e e erc ondu o to to to rs to rs。How ever , th e i r s t r u c tu re t re nd s a nd th e c h e mi ca l d r i v ing fo rce n ee d e d to di ss o c i a t e H 2 a nd fo rm H c o va l e nt n e two rk ca nno t b e explained b y di rec t me t a l-h y d r og e n bond s .here,如何将其构成,以征求意见。By a n a l y zing high-th r oughput ca l c ul a tion res ult s of me t a l s acr o s s t h e pe r iodi c tabl e a nd in var iou s l a tti ces , w e s how th a t, a ft er rem o v ing H, th e rema ining me tal l a t t i ces ex hibit l ar g e e l ec t r on o cc up a n n a a a a a t e c int ect i a l o a ls a ls a ls a llentl y to tti ces and tti ces and tti ces and t e i r w ave fun c tion s li ke li ke a te m p te m pl a t te m pl a t te t te t te t te t te t te t te t te t te t te t te t te t te t te t te t te t te t te t t t t te m pl a t te。fu r therm o re,在3 d ar o ma ti c构建单位的s i s tti c e s c上,在a r e g e g e e tabiliz e d b y c y c h em i ca e em i ca l t em t em t e em t e em t e e e t a e e t a l s n ear t e s s s s s -d b b b b d b r d er th e t e e t e e s the。Thi s th e or y can n a tu ra ll y ex pl a in th e s t a bilit y a nd s t r u c tu re t re nd s of s up er h y d r id es a nd gr eat l y enhance th e e ffi c i e n cy of p re di c ting n e w ma t er i a l s , s u c h as two-m eta l supe r h y d r id es .
抽象一些具有大小,形状,电荷和两亲性体系结构类似于短阳离子A-螺旋肽的大小,形状,电荷和两亲性体系结构的 已显示出靶向和稳定DNA G四链体(G4S)的靶向和稳定,并在体外稳定了G4调节基因在人类细胞中的表达。 扩大可以充当有效的DNA G4粘合剂并下调包含G4形成序列的基因的金属结构库,我们调查了两个对映体对对映体的相互作用的相互作用C-Myc,C-Kit和K-Ras Oncogenes。 在所有研究的G4形成序列中,金属纤维表现出比双链DNA的优先结合,并在包含G4形成序列的模板链上诱导了DNA聚合酶的诱导停滞。 此外,如RT-QPCR分析和蛋白质印迹揭示了研究的Myallohelices在HCT116人类癌细胞中mRNA和蛋白水平上抑制了C-MYC和K-RAS基因在mRNA和蛋白水平上的表达。已显示出靶向和稳定DNA G四链体(G4S)的靶向和稳定,并在体外稳定了G4调节基因在人类细胞中的表达。 扩大可以充当有效的DNA G4粘合剂并下调包含G4形成序列的基因的金属结构库,我们调查了两个对映体对对映体的相互作用的相互作用C-Myc,C-Kit和K-Ras Oncogenes。 在所有研究的G4形成序列中,金属纤维表现出比双链DNA的优先结合,并在包含G4形成序列的模板链上诱导了DNA聚合酶的诱导停滞。 此外,如RT-QPCR分析和蛋白质印迹揭示了研究的Myallohelices在HCT116人类癌细胞中mRNA和蛋白水平上抑制了C-MYC和K-RAS基因在mRNA和蛋白水平上的表达。已显示出靶向和稳定DNA G四链体(G4S)的靶向和稳定,并在体外稳定了G4调节基因在人类细胞中的表达。扩大可以充当有效的DNA G4粘合剂并下调包含G4形成序列的基因的金属结构库,我们调查了两个对映体对对映体的相互作用的相互作用C-Myc,C-Kit和K-Ras Oncogenes。在所有研究的G4形成序列中,金属纤维表现出比双链DNA的优先结合,并在包含G4形成序列的模板链上诱导了DNA聚合酶的诱导停滞。此外,如RT-QPCR分析和蛋白质印迹揭示了研究的Myallohelices在HCT116人类癌细胞中mRNA和蛋白水平上抑制了C-MYC和K-RAS基因在mRNA和蛋白水平上的表达。
摘要:在本文中,我区分了人工智能 (AI) 背景下可能出现的三种危害:个人危害、集体危害和社会危害。社会危害经常被忽视,但不能归结为前两种危害。此外,应对人工智能引起的个人和集体危害的机制并不总是适合应对社会危害。因此,政策制定者对当前人工智能法律框架的差距分析不仅存在不完整的风险,而且为弥补这些差距而提出的新立法提案也可能无法充分保护受到人工智能不利影响的社会利益。通过概念化人工智能的社会危害,我认为需要从个人角度转变视角,转向人工智能的监管方法,以解决其对整个社会的影响。借鉴专门保护社会利益的法律领域——环境法,我确定了欧盟政策制定者在人工智能背景下应考虑的三种“社会”机制。这些机制涉及 (1) 公共监督机制,以提高问责制,包括强制性影响评估,并提供提供社会反馈的机会; (2) 公共监测机制,以确保独立收集和传播有关人工智能社会影响的信息; (3) 引入具有社会维度的程序性权利,包括获取信息、获得司法公正和参与人工智能公共决策的权利,无论个人受到何种伤害。最后,在提出总结性意见之前,我会考虑欧盟委员会关于人工智能监管的新提案在多大程度上考虑到了这些机制。
定向金属沉积 (DMD) 是一种很有前途的金属增材制造技术,其中零件是通过使用沿预定义轨迹移动的激光束融合注入的金属粉末颗粒来制造的。刀具路径通常包括曲线或边缘部分,机器轴需要相应地减速和加速。因此,局部施加的激光能量和粉末密度在沉积过程中会发生变化,导致局部过度沉积和过热。这些偏差还受到刀具路径几何形状和工艺持续时间的影响:先前的沉积可能会在时间和空间上影响相近的刀具路径段,导致局部热量积聚,并形成与使用相同参数沉积的其他段中产生的轮廓和微观结构不同的轮廓和微观结构,这是由于几何形状和温度相关的集水轮廓所致。为了防止这些现象,需要轻量级和可扩展的模型来预测可变刀具路径的工艺行为。在本文中,我们提出了一种基于人工智能的方法来处理 Inconel 718 的工艺复杂性和多种刀具路径变化。考虑到先前定义的刀具路径,使用人工神经网络 (ANN) 来预测沉积高度。通过打印包含多个曲率和几何形状的随机刀具路径,生成了训练数据。基于训练后的模型,可以成功预测整个刀具路径的显著局部几何偏差,并且可以通过相应地调整工艺参数来预测。
通过检测无细胞DNA(C Q Q QA)和非侵入性产前测试(NIPT)[1,2]的发育来彻底筛选染色体非整倍型的染色体。While over decades, the detection rate (DR) of trisomy 21 could be improved from only 30% to 90% at a false positive rate (FPR) of 5% by first trimester combined screening (FTCS), c ff DNA has a DR of Down syndrome of 99% at a very low FPR of 0.04% [3, 4, 5, 6, 7, 8, 9, 10, 11, 12].三体三体第18和18的DRS与双胞胎妊娠中的C扰性[9、10、11、12]相似。尽管表现出色,但C效应仍然是筛查测试,并且通过侵入性测试确认了高风险C扰动的结果[13,14]。由于其高昂的成本,大多数医疗保健系统并未对所有孕妇进行DNA筛查。因此,已经提出了直接c或偶然筛选的不同模型[15,16,17]。在瑞士,所有孕妇的健康保险提供者都偿还了FTC,包括一名经过认证的超声检查员的详细超声检查,并测量了胎儿颈部半透明(NT)以及生化分析。在超声波中看到的胎儿异常,NT> 95%的胎儿疾病或FTCS≥1:380的任何三体造期风险。自2015年7月以来,作为全球最早的国家之一,斯威茨 - 以偶然的方式实施了常规筛查。如果在FTC上将孕妇年龄(MA)和NT与生化血清标记物β-人类绒毛膜促性腺激素
T&E在今天至2050年之间开发了三种用于电池原材料的需求,尤其是锂,镍,钴和锰的情况。所有场景都假设到2050年的乘客运输充分电气化,并加速了电池电动汽车的摄取,直到现在从现在开始最大化CO 2节省。“照常业务” -BAU-场景采取了当前预期的电池大小和化学行业趋势,以及现状的私家车活动。“加速创新,更少的汽车km”(或加速 - 场景)假设向较小的电池进行了实质性转移,更快地吸收了具有较少关键金属的电池化学物质(例如锂电池,没有钴或镍(LFP)或钠离子电池),而私人汽车驱动的公里更少。最终的“积极创新和更少的汽车公里”(或激进)的情况将这些假设带到了另一个缺点,以实现更激进的变化。
摘要:人工智能 (AI) 结合了算法、机器学习和自然语言处理的应用。AI 在教育领域有多种应用,例如自动评估和面部识别系统、个性化学习工具和微博系统。这些 AI 应用有可能通过支持学生的社交和认知发展来提高教育能力。尽管具有这些优势,但 AI 应用仍存在严重的伦理和社会缺陷,而这些缺陷在 K-12 教育中很少被考虑。将这些算法融入教育可能会加剧社会现有的系统性偏见和歧视,使来自边缘化和服务不足群体的学生的隐私、自主权和监视问题长期存在,并加剧现有的性别和种族偏见。在本文中,我们探讨了 AI 在 K-12 教育中的应用,并强调了它们的道德风险。我们引入教学资源,帮助教育工作者应对整合人工智能的挑战,并提高 K-12 学生对人工智能和道德的理解。本文最后提出了研究建议。
由于高电力,快速充电/放电速率和长周期稳定性,对超级电容器在储能系统中的应用越来越兴趣。研究人员最近专注于开发纳米材料,以增强其超级电容器的电容性能。尤其是,由于其扩大的特定表面积,将纤维作为模板的利用带来了理论和实用的优势,这会导致快速电解质离子扩散。此外,据信,氧化还原活性成分(例如过渡金属氧化物(TMO)和导电聚合物(CPS))被认为在改善基于晶格材料的电化学行为方面起着重要作用。尽管如此,含有基于TMO和CP的纤维的超级电容器通常患有下等离子传输动力学和电子电导率较差,这会影响电极的速率能力和循环稳定性。因此,基于TMO/CP的脑的发展引起了广泛的关注,因为它们协同结合了两种元素的优势,从而在电化学领域具有革命性的应用。本综述描述并重点介绍了基于TMO-,CP-和TMO/CP基于其设计方法,为超级电容器应用的配置和电化学性能的开发的进展,同时为未来的存储技术提供了新的机会。©2019作者。由Elsevier Ltd.这是CC BY-NC-ND许可证(http://creativecommons.org/licenses/by-nc-nd/4.0/)下的开放访问文章。
随着新的州法规要求在婴儿食品中披露重金属水平,以及增加的消费者,媒体和监管审查,医疗提供者应预期有关父母和照料者的问题会增加。借鉴了解决消费者查询的七年经验,清洁标签项目(一个致力于产品标签透明度的国家非营利组织,以及针对婴儿食品和婴儿配方中的重金属研究的最大研究的背后的组织 - 已经确定了主要问题提供者可能面临的主要问题。此资源将复杂的问题变成了可行的建议,从而为儿童健康做出了明智的决定。
