精确农业涉及使用实时信息来增强对资源的有效利用和对农业方法的监督,同时却最大程度地减少了不利的环境影响。多亏了遥感技术的进步,现在在农业部门中生产了大量的大数据。当使用机器和深度学习技术进行分析时,该数据需要转换为有价值的信息,已证明是有益的。这个研究主题“大数据,机器和深度学习的最新进展”吸引了20种高质量的文章,这些文章涵盖了现状的应用以及人工智能,大数据,特征优化,作物疾病检测和分类的精确农业的技术发展。在不断发展的农业景观中,三个关键主题已成为变革性变革的信标。本社论探讨了塑造农业未来的创新领域,重点是三个相互联系的主题:植物疾病检测和作物健康监测的进步,在精确农业中的人工智能(AI)和机器学习(ML)的整合以及用于作品生产优化的方法。在农业科学领域,由于开创性的研究努力,植物疾病检测和作物健康监测的动态景观已经取得了重大进展。Shoaib等。解决噬菌毒全球问题通过强调机器学习技术的关键作用来面对手动监测植物疾病的持续挑战。他们的工作提出了一个基于深度学习的系统,利用了在一个大量数据集中训练的卷积神经网络(Inception Net),其中包括18,161个细分和非细分的番茄叶图像。值得注意的是使用两个最先进的语义分割模型U-NET和修改的U-NET进行疾病检测和分割。结果展示了修改后的U-Net模型的出色性能,超过现有方法,并以高精度对植物疾病进行分类时的效率。
他获得了博士学位。学位于2010年,在:化学技术与冶金学大学(UCTM) - 索菲亚(Bulgaria)的硅酸盐技术,结合材料和高温可融合的非金属材料领域的领域。 他的博士学位论文的标题为:“纳米复合材料混合涂料的调查和评估以保护腐蚀”。 他获得了硕士学位 在2004年获得UCTM – Sofia的冶金学和材料科学学院的化学工程学位,具有硅酸盐材料的专业,其论文的标题是:详细和表征带有perovskite结构的红色陶瓷色素,在Uji - Castellon(Spain)也呈现。 他的学士学位 论文于2002年在同一所大学发表,并致力于:“通过固定的光敏剂对饮料水进行灭菌”。 如今,他是8本书的作者,以及70多个出版物(H-Index 13和660引用),与先进的腐蚀保护系统,陶瓷材料回收,喷雾热解合成和陶瓷传感器元素有关。他获得了博士学位。学位于2010年,在:化学技术与冶金学大学(UCTM) - 索菲亚(Bulgaria)的硅酸盐技术,结合材料和高温可融合的非金属材料领域的领域。他的博士学位论文的标题为:“纳米复合材料混合涂料的调查和评估以保护腐蚀”。他获得了硕士学位在2004年获得UCTM – Sofia的冶金学和材料科学学院的化学工程学位,具有硅酸盐材料的专业,其论文的标题是:详细和表征带有perovskite结构的红色陶瓷色素,在Uji - Castellon(Spain)也呈现。 他的学士学位 论文于2002年在同一所大学发表,并致力于:“通过固定的光敏剂对饮料水进行灭菌”。 如今,他是8本书的作者,以及70多个出版物(H-Index 13和660引用),与先进的腐蚀保护系统,陶瓷材料回收,喷雾热解合成和陶瓷传感器元素有关。在2004年获得UCTM – Sofia的冶金学和材料科学学院的化学工程学位,具有硅酸盐材料的专业,其论文的标题是:详细和表征带有perovskite结构的红色陶瓷色素,在Uji - Castellon(Spain)也呈现。他的学士学位论文于2002年在同一所大学发表,并致力于:“通过固定的光敏剂对饮料水进行灭菌”。如今,他是8本书的作者,以及70多个出版物(H-Index 13和660引用),与先进的腐蚀保护系统,陶瓷材料回收,喷雾热解合成和陶瓷传感器元素有关。
*列出的展会日期截至 2024 年 8 月。日期和主题如有更改,恕不另行通知。有些展会在发布时尚未公布日期,而是预估日期。• 如需提交社论以供在线发布或获取作者指南,请联系主编 Karen Langhauser:klanghauser@comparenetworks.com。• 与我们分享您的新闻稿和产品公告:news@cellgenetherapyreview.com
本文所包含的信息基于Repsol Quimica的当前知识和经验,并且仅凭指导才能真诚地呈现。尽管在包含本文包含的信息时宣布Quimica最勤奋,但考虑到几个和不同的因素可能影响产品的处理,应用或使用,但转换器应在每种情况下都应对产品进行转换以及最终使用的情况。Repsol Quimica警告说,此信息可能会经历差异或改进;因此,Repsol Quimica没有义务在本文档中反映它们,也没有将它们传达给可以访问它的任何人。此外,这些读者应该意识到,某些产品可能受到知识产权的保护。©Repsol Quimica,S.A。2024。保留所有权利。
抽象目的总颅内体积(TIV)通常是基于MRI的脑容量的滋扰。这项研究比较了两种TIV调整方法在区域大脑体积估计的单个受试者分析中对Z分数的影响。在包含5059 T1W图像的正常数据库中分割了脑脑实质,海马,丘脑和TIV的方法。使用剩余方法或比例方法调整了TIV的区域体积估计值。年龄。TIV和年龄调整后的区域体积转化为Z分数,然后在两种调整方法之间进行比较。在127例多发性硬化症患者中测试了它们对丘脑萎缩检测的影响。结果剩余方法在所有地区删除了与TIV的关联。比例方法导致了方向的转换,而没有相关的关联强度变化。使用剩余方法的生理学间变异性的降低比使用比例方法更大。用残差方法与比例方法获得的z得分之间的差异与TIV密切相关。在5%的受试者中,它大于一个z得分点。用剩余方法比使用比例方法(0.84对0.79),鉴定多发性硬化症患者的TIV和年龄调整后的丘脑体积的ROC曲线下的面积更大。结论在单个受试者分析中,应首选剩余方法进行TIV和基于T1W-MRI的大脑体积估计的年龄调整。
bezero部门分类的轮廓3方法论3 1。简介4贝泽部门分类的概述4 BEZERO分类结构5 2。项目资格7 3。数据和数据源7 4。BeZero部门分类委员会7 5。Guidelines for BeZero Sector Classification 8 Project data collection 9 Sector classification by primary project activity 9 One project activity maps to one BeZero sub-sector 9 Project is applicable to multiple BeZero sub-sectors and provides quantitative data on credit issuance 9 Project activity matches with multiple BeZero sub-sectors and does not provide quantitative data on credit issuance 10 Review process 11 Appendix A: Sector Classification Definitions (Version 2.1) 12 10 Energy 12 20家庭设备13 30工业流程14 40基于自然的解决方案15 50工程碳清除16 60浪费17附录B:更新和审查18附录C:标准机构和相关注册表(非避免)19
自 2019 年冠状病毒病 (COVID-19) 出现以来,全球公共卫生基础设施和系统以及社区范围内的合作和服务都面临着前所未有的挑战。疫苗开发立即成为我们所有科学、公共卫生和社区工作的中心。尽管 SARS-CoV-2 疫苗的开发可以说是过去 12 个月中最伟大、最明显的成就,但它们也是疫情期间最具争议和争论的问题之一。然而,疫苗开发的独特之处在于它与其试图服务的社区有着密切的关系;无论是作为一种有效和安全的预防措施进行的临床试验测试,还是作为一种有效的公共卫生工具在开发后“推广”的成功。这些关系产生了无数的复杂性,从基于社区的不信任到学术上争论的道德困境。事实上,COVID-19 疫苗竞赛的加速发展进一步加剧了这一现象,带来了新的伦理困境,需要对其进行研究以确保这些疗法在临床上继续取得成功,并恢复社会对临床医学的信任。在本文中,我们讨论了两个主要的伦理困境:(1) 在成功候选疫苗出现时继续进行新疫苗试验的平衡和 (2) 盲法安慰剂组的弊端。因此,我们讨论了解决这些伦理困境的六种不同方法:(1) 继续进行安慰剂对照试验,(2) 从安慰剂对照过渡到开放标签,(3) 仅对高风险优先组进行揭盲,(4) 过渡到盲法阶梯楔形交叉设计,(5) 进展到盲法活性对照阶梯楔形交叉试验,以及 (6) 进行随机阶梯楔形社区试验。我们还为疫苗试验后期的相关利益相关者提出了一种决策算法。重要的是要记住,COVID-19 疫情的突发性并不意味着可以对核心道德价值观做出妥协。事实上,围绕这一主题的讨论和所做出的决定将仍然是一个有力的案例研究,并将成为未来所有此类情景的一个不断参考的例子。
变量 数值 单位 参考 电解器效率(LHV) 65 % [36] 电解器 H 2 出口压力 30 bar [36] H 2 压缩多变效率 60 % [37] H 2 存储最大压力 350 bar [38] 气网压力 50 bar [39] CO 2 压缩多变效率 85 % [40] CH 4 压缩多变效率 85 % [40] 电解器标称功率 3 MW 本文 甲烷化反应器压力 10 bar [3] 甲烷化反应器温度 350 ºC [3] CO 2 源能耗 0.64 kWh/kg CO2 [41]
因此,这些仍然是暴风雨的时期,这与新系统技术的出现相处。一年前,观察到荷兰必须采取措施才能掌握算法。同时,AI技术的动荡增长仍在继续。此外,生成AI的出现为通过新的AI应用程序进行了大规模实验提供了激励措施。在未来几年中,AI将与社会要素越来越深深地交织在一起。这是在规模和自然方面的结果,在更多和更新的风险中仍然难以评估。其长期影响也尚未完全理解。总的来说,到目前为止,国际政策响应已经决定性。它既关注传统的监督,又关注新的测试和控制形式,例如AI系统的安全性以及打击新的网络安全风险。同时
