我们介绍了CGAPOSENET+GCAN,它通过使用几何Clifford代数网络(GCAN)增强了CGAPOSENET,这是相机姿势回归的架构。添加GCAN,我们仅从RGB图像中获得了相机姿势回归的几何感知管道。cgaposenet使用Clifford几何代数将四元组和翻译向量统一为单个数学对象,即电动机,可用于独特地描述相机姿势。cgaposenet可以在其他方法中获得综合结果,而无需调查损失功能或有关场景的其他信息,例如3D点云,这可能并不总是可用。cgaposenet就像文献中的几种方法一样,只学会了预测运动系数,并且没有意识到预测位于其几何含义的数学空间。通过利用几何深度学习的最新进展,我们从GCAN上修改了CGAPOSENET:从InceptionV3背骨中获得与摄像机框架相关的可能的运动系数的建议,然后通过在G 4,0中使用的一组层来,将它们通过单个电动机为单个电动机。网络的工作是几何意识,具有多活性价值in-
多面体蛋白纳米局量作为疫苗平台取得了很大的成功(1-3),并且是生物制剂递送的有前途的车辆(4-7)。因此,人们对设计能够显示大量抗原或包装更大的更大的碳的更大且更复杂的结构有很大的兴趣。然而,常规的多面体是所有亚基都具有相同局部环境的最大闭合结构(8-11),因此访问更大,更复杂的封闭结构需要打破局部对称性。病毒通过在独特的环境(伪对称)(12)中放置化学不同但结构上相似的链条或利用相同的亚基来解决这个问题,或者利用在不同环境中采用不同构象的相同亚基(准对象)(13-15)(13 - 15),以访问具有更高的三角形(T)数量(13)结构(13),具有较大的亚基和互联剂和较大的子燃料。设计更大,更复杂的纳米焦点的一种有希望的途径是从定期的多面体纳米局(t = 1)开始,该纳米局(t = 1)是由对称的同构构构建块构建的,这些构建块的分离式环状布置是通过在假异构的异构体中代替这些构建块的隔离循环排列,然后通过将t = 4和大型结构与其他结构结合在一起,并与这些其他结构相结合。在这里,我们提供了这种设计方法的高级几何概述,以说明如何使用设计多样性和设计经济之间的权衡方向来实现不同的设计成果,正如在两篇随附的论文中实验证明的那样,Lee等人(16)和Dowling等人(17)。
[1] S. Abe。关于非广延物理中广义熵的 q 变形理论方面的注释。Phys. Lett.,A 224:326,1997 年。[2] S. Abe 和 AK Rajagopal。非加性条件熵及其对局部现实主义的意义。Physica,A 289:157,2001 年。[3] L. Accardi。非相对论量子力学作为非交换马尔可夫过程。Adv. Math.,20:329,1976 年。[4] A. Ac´ın、A. Andrianov、L. Costa、E. Jan´e、JI Latorre 和 R. Tarrach。三量子比特态的广义 Schmidt 分解和分类。Phys. Rev. Lett. ,85:1560,2000 年。[5] A. Ac´ın、A. Andrianov、E. Jan´e 和 R. Tarrach。三量子比特纯态正则形式。J. Phys.,A 34:6725,2001 年。[6] M. Adelman、JV Corbett 和 C. A Hurst。状态空间的几何形状。Found. Phys.,23:211,1993 年。[7] G. Agarwal。原子相干态表示态多极子与广义相空间分布之间的关系。Phys. Rev.,A 24:2889,1981 年。[8] SJ Akhtarshenas 和 M. A Jafarizadeh。贝尔可分解态的纠缠稳健性。E. Phys. J. ,D 25:293,2003 年。[9] SJ Akhtarshenas 和 MA Jafarizadeh。某些二分系统的最佳 Lewenstein-Sanpera 分解。J. Phys. ,A 37:2965,2004 年。[10] PM Alberti。关于 C ∗ 代数上的转移概率的注记。Lett. Math. Phys. ,7:25,1983 年。[11] PM Alberti 和 A. Uhlmann。状态空间中的耗散运动。Teubner,莱比锡,1981 年。[12] PM Alberti 和 A. Uhlmann。随机性和偏序:双随机映射和酉混合。Reidel,1982 年。[13] PM Alberti 和 A. Uhlmann。关于 w ∗ -代数上内导出正线性形式之间的 Bures 距离和 ∗ -代数转移概率。应用数学学报,60:1,2000 年。[14] S. Albeverio、K. Chen 和 S.-M. Fei。广义约化标准
第1章:p。 1:John Foxx/Stockbyte Silver/Getty Images。第2章:p。 117:安德鲁·布鲁克斯(Andrew Brookes/Corbis); p。 128:Bryan Mullennix/Iconica/Getty Images; p。 132:由NASA和JPL提供; p。 145:托尼·克拉多克/盖蒂图像; p。 159:路透社/新媒体公司/Corbis。第3章:p。 254:由理查德·国家(Richard Nation)提供。第4章:p。 307:McDuff/Everton/Corbis。第5章:p。 334:Dennis de Mars/Fractal域/www.fractaldomains.com; p。 334:史蒂夫·艾伦/阿拉米; p。 351:Granger Collection。第6章:p。 371:1998年人工视觉质量控制国际会议 - QCAV '98,喀瓦瓦会议中心,高毛,日本喀瓜瓦,1998年11月10日至12日,第1998年,pp。521–528; p。 372:伊恩·莫里森(Ian Morison/Jodrell Bank)音乐学院; p。 374:由Opti-Gone International的Michael Levin提供。经许可转载; p。 389:休·鲁尼(Hugh Rooney)/眼睛无处不在/科比斯(Corbis); p。 397:Granger Collection。第7章:p。 451:美联社/世界照片; p。 458:Bettmann/Corbis; p。 463:Charles O'Rear/Corbis; p。 464:David James/Getty Images; p。 467:Bettmann/Corbis; p。 474:Jan Halaska/Index库存图像/木星图像; p。 513:Tom Brakefield/Corbis; p。 521:Bettmann/Corbis; p。 525:AP/广阔世界。
未经出版商事先书面许可,不得以任何形式或任何方式(电子、机械、影印、录音或其他方式)复制、存储本出版物的任何部分或将其存储在检索系统中或进行传输。可直接从英国牛津的 Elsevier 科学与技术权利部申请许可:电话 (+44) (0) 1865 843830;传真 (+44) (0) 1865 853333;电子邮件:permissions@elsevier.com。或者,您可以访问 Elsevier 网站 http://elsevier.com/locate/permissions,然后选择“获得使用 Elsevier 材料的许可”,在线提交您的请求。
通过脑机接口,重建所看到的人脑活动图像连接了人机视觉和计算机视觉。由于个体之间大脑功能存在固有差异,现有文献主要集中于使用每个人各自的脑信号数据为每个人获取单独的模型,而忽略了这些数据之间的共性。在本文中,我们设计了心理测量学,这是一个全方位模型,用于重建从不同受试者获得的功能性磁共振成像 (fMRI) 图像。心理测量学包含一个全方位专家混合 (Omni MoE) 模块,其中所有专家共同努力捕捉受试者间的共性,而与特定受试者参数相关的每个专家则负责处理个体差异。此外,心理测量学还配备了一种检索增强推理策略,称为 Ecphory,旨在通过检索预先存储的特定受试者记忆来增强学习到的 fMRI 表征。这些设计共同使心理测量变得万能而高效,使其能够捕捉受试者之间的共性和个体差异。因此,增强的 fMRI 表征可作为条件信号来指导生成模型重建高质量逼真的图像,从而使心理测量在高级和低级指标方面都成为最先进的技术。
我们的目标是理解自然界中可能出现的量子系统的所有可能状态的集合的几何形状。这是一个非常普遍的问题;特别是因为我们并不试图非常精确地定义“状态”或“系统”。事实上,我们甚至不会讨论状态是事物的属性,还是事物准备的属性,还是对事物的信念。然而,我们可以问,如果集合首先要用作状态空间,那么需要对集合施加什么样的限制?在量子力学和经典统计学中都自然出现了一个限制:集合必须是凸集。这个想法是,凸集是一个集合,人们可以形成集合中任何一对点的“混合”。正如我们将看到的,这就是概率的由来(尽管我们也没有试图定义“概率”)。从几何角度来看,两种状态的混合可以定义为表示我们想要混合的状态的两个点之间的直线段上的一个点。我们坚持认为,给定两个属于状态集的点,它们之间的直线段也必须属于该集合。这当然不适用于任何集合。但在我们了解这个想法如何限制状态集之前,我们必须有一个“直线”的定义。一种方法是将凸集视为平坦欧几里得空间 E n 的一种特殊子集。实际上,我们可以用更少的方法来实现。将凸集视为仿射空间的子集就足够了。仿射空间就像向量空间,只是没有假设特殊的原点选择。通过两个点 x 1 和 x 2 的直线定义为点集
hal是一个多学科的开放访问档案,用于存款和传播科学研究文件,无论它们是否已发表。这些文件可能来自法国或国外的教学和研究机构,也可能来自公共或私人研究中心。
如今,“更多的摩尔”和“超过摩尔”设备体系结构已大大提高了新型材料的重要性,从而需要提供适当的表征和计量,以实现可靠的过程控制。 例如,在多通道场效应设备或升高来源中使用的SIGE或SIP化合物的引入导致需要确定所得膜的精确组成。 在这项工作中,已经使用主要无损haxpes和TOF-SIMS研究了二进制材料(例如SIP和SIGE)的定量。 的确,虽然使用RB的主要障碍是薄膜的表征,但具有适当定量功能(例如Atom探针断层扫描和传输电子显微镜)的技术既耗时又耗时,并且由于其高度局部的分析量而缺乏灵敏度。 对于定量表征,常规的X射线光电子光谱(XPS)是一个强大的工具。 然而,其低分析深度仍然是研究掩埋界面的主要限制因素,尤其是在本研究中,因为所获得的基于SI的层在环境条件下被氧化(或者应该受到一些纳米计的金属层保护)。 ,由于电子在二元材料表面的化学组成和SIO 2在层中的深入分布,因此使用了一种基于实验室的硬X射线源(HAXPE),这既要归功于层次的SIO 2的深度分布,这要归功于电子的非弹性平均自由路径随光子能量增加的增加(铬Kα,Hν= 5414.7 ev)[1] [1]。如今,“更多的摩尔”和“超过摩尔”设备体系结构已大大提高了新型材料的重要性,从而需要提供适当的表征和计量,以实现可靠的过程控制。例如,在多通道场效应设备或升高来源中使用的SIGE或SIP化合物的引入导致需要确定所得膜的精确组成。在这项工作中,已经使用主要无损haxpes和TOF-SIMS研究了二进制材料(例如SIP和SIGE)的定量。的确,虽然使用RB的主要障碍是薄膜的表征,但具有适当定量功能(例如Atom探针断层扫描和传输电子显微镜)的技术既耗时又耗时,并且由于其高度局部的分析量而缺乏灵敏度。对于定量表征,常规的X射线光电子光谱(XPS)是一个强大的工具。然而,其低分析深度仍然是研究掩埋界面的主要限制因素,尤其是在本研究中,因为所获得的基于SI的层在环境条件下被氧化(或者应该受到一些纳米计的金属层保护)。,由于电子在二元材料表面的化学组成和SIO 2在层中的深入分布,因此使用了一种基于实验室的硬X射线源(HAXPE),这既要归功于层次的SIO 2的深度分布,这要归功于电子的非弹性平均自由路径随光子能量增加的增加(铬Kα,Hν= 5414.7 ev)[1] [1]。确认通过HAXPES测量获得的感兴趣材料的组成并计算出适当的相对灵敏因子(RSF),相同的膜以TOF-SIMS为特征。但是,例如Haxpes,SIP/SIGE层的次级离子质谱法(SIMS)表征通常由于p/ge含量的电离产量的非线性变化而受到基质效应。通过分析参考样本,遵循MCS 2+辅助离子或使用完整的光谱协议[2],可以通过分析参考样品来超越此限制。最后,计算了次级离子束的P和GE(Si)组成,并将其与X射线衍射确定的参考组成进行比较。还研究了测量值的可重复性和层氧化的影响。得出结论,通过将haxpes结果与TOF-SIM耦合,准确评估了层的深入组成和表面氧化物的厚度。
聚合饱和。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>2个Algenerables。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>6个阀门。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div>6个阀门。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>7 Counticiquiqureefeates。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>9显示。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>10壮举1。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>11壮举3。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>12 hlpsms。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>13算。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。。。。。。。。。。。。。。。。。。。。。。。。。14个加入。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。15失踪数据。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。17 QFEATURES。。。。。。。。。。。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>19量过滤。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>24 QFensures处理。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>27个ReadQfeats。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。。。。。。。。。。。。。。。。。。。。。。。。。。。。。29 readQfeatures fromdiann。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。33还原frame。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。35子群。。。。。。。。。。。。。。。。。。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>37展开数据工厂。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>3800 div>