摘要:使用三价ERBIUM(ER 3+)的使用,通常嵌入固态中的原子缺陷,在电信设备中广泛采用作为掺杂剂,并显示出基于自旋的量子记忆的量子记忆,以实现量子通信。尤其是其天然电信C波段光学转变和自旋 - 光子接口使其成为集成到现有光纤网络中的理想候选者,而无需量子频率转换。然而,成功的缩放需要具有固有核自旋的宿主材料,与半导体铸造工艺的兼容性以及与硅Pho-Pho-Photonics的直接整合。在这里,我们使用铸造型原子层沉积过程呈现二氧化钛(TiO 2)在硅底物上的薄膜生长,并在ER浓度上具有广泛的掺杂控制。即使在氧气退火后生长的膜是无定形的,它们也表现出相对较大的晶粒,并且嵌入的ER离子表现出来自氧化酶TiO 2的特征性光学发射光谱。至关重要的是,这种生长和退火过程保持了纳米光整合所需的低表面粗糙度。最后,我们通过evaneScent耦合与高质量的Si纳米腔腔接头,并展示了其光学寿命的大型purcell增强(≈300)。我们的发现表明,将ER掺杂材料与硅光子学集成在一起的低温,非破坏性和底物独立的过程。关键字:原子层沉积,纳米光子学,稀土离子,Purcell增强,量子记忆F在高掺杂密度下,该平台可以实现集成的光子组件,例如片上放大器和激光器,而稀释浓度可以实现单个离子量子记忆。
摘要:使用三价ERBIUM(ER 3+)的使用,通常嵌入固态中的原子缺陷,在电信设备中广泛采用作为掺杂剂,并显示出基于自旋的量子记忆的量子记忆,以实现量子通信。尤其是其天然电信C波段光学转变和自旋 - 光子接口使其成为集成到现有光纤网络中的理想候选者,而无需量子频率转换。然而,成功的缩放需要具有固有核自旋的宿主材料,与半导体铸造工艺的兼容性以及与硅Pho-Pho-Photonics的直接整合。在这里,我们使用铸造型原子层沉积过程呈现二氧化钛(TiO 2)在硅底物上的薄膜生长,并在ER浓度上具有广泛的掺杂控制。即使在氧气退火后生长的膜是无定形的,它们也表现出相对较大的晶粒,并且嵌入的ER离子表现出来自氧化酶TiO 2的特征性光学发射光谱。至关重要的是,这种生长和退火过程保持了纳米光整合所需的低表面粗糙度。最后,我们通过evaneScent耦合与高质量的Si纳米腔腔接头,并展示了其光学寿命的大型purcell增强(≈300)。我们的发现表明,将ER掺杂材料与硅光子学集成在一起的低温,非破坏性和底物独立的过程。关键字:原子层沉积,纳米光子学,稀土离子,Purcell增强,量子记忆F在高掺杂密度下,该平台可以实现集成的光子组件,例如片上放大器和激光器,而稀释浓度可以实现单个离子量子记忆。
图1:A。本研究中使用的颗粒和实验方案的特征。从上到下:VLP HIV,像人免疫缺陷病毒的粒子一样; MLV,鼠白血病病毒; HBV,肝素B病毒; AAV,Adeno相关病毒(血清型8和9);电动汽车,细胞外囊泡。需要荧光标记颗粒:可以通过基因组修饰(HIV和MLV的GFP标记)或直接通过在样品中添加荧光团(AAV和HBV的Yoyo-1,EVS的DIO)来实现。潜在的细胞DNA在VLP HIV和EV中以红色表示,MLV中的粉红色病毒RNA和HBV和AAV中的紫色病毒DNA表示。然后将样品稀释。大小由NTA确定HIV,MLV和EVS,以及AAV 37和HBV 38的冷冻EM重建。B.零模式波导设置,用于通过纳米孔转移的颗粒。顺式腔室包含荧光标记的颗粒。在施加压力时,颗粒在跨室中的孔中推动,并在孔末端越过evanevencent的田地区域时照亮。一旦他们离开了毛孔,他们就没有专心和漂白。C.事件的荧光演变是时间和粒子出口快照的函数。归一化强度表示为AAV时间的函数(紫罗兰和红点,平均在n = 50事件上)。通过最大强度分配强度获得归一化强度。时间在事件开始时被重新缩放至零,红点与事件发生前的强度相对应。指数衰减以蓝色表示。孔径400 nm,施加压力为0.5 mbar。帧速率:112 fps。插图:图像尺寸= 10 µm。
摘要 虽然在没有自由液体的情况下,通过极度干旱的表面交换的蒸汽会影响沙海的水平衡,但由于缺乏具有精细空间分辨率的精确仪器,其机制记录不多。为了纠正这个问题,我们报告了流动沙丘表面下方的体积密度分布和蒸汽质量分数的时空变化,这些变化是用对吸附在沙粒上的微小水膜敏感的多传感器电容探头获得的。我们还记录了 2 天内的风速和风向、环境温度和相对湿度、净辐射通量和地下温度分布。数据验证了蒸汽质量分数的非线性模型。与通过谷物传导的热量不同,蒸汽通过平流和扩散渗透到间隙孔隙空间。在比蒸发更长的时间尺度上,吸附膜与周围环境保持平衡并阻碍分子扩散。它们与地下温度的非线性耦合导致蒸汽分布出现拐点,而在更简单的扩散系统中则没有对应现象。当风在地形上引起细微的压力变化时,就会出现孔隙平流。在风沙输送期间,流沙会间歇性地使地表脱水,引发瞬时蒸汽波,其振幅在特征长度上呈指数衰减,这意味着吸附率受动力学限制的活化过程控制。最后,探测器产生与大气边界层的扩散和平流交换。在白天,它们的总通量小于预期,但几乎与地表和高空的蒸汽质量分数之差成正比。在夜间更稳定的分层下,或在风沙输送期间,这种关系不再成立。
在改编自其最新著作《游戏:通往自我的基本途径》(2020 年由 The Strong 出版)的一篇文章中,作者对游戏研究以及促成该学科创立的思想家、哲学家和学者进行了广泛的回顾。他还回顾并试图向专家和普通读者解释游戏本身的巨大多样性,他最终将游戏视为一条“体验途径”,类似于仪式、工作以及他所说的社区。 关键词:社区、游戏、游戏学术、游戏研究、游戏理论、仪式、工作 游戏的学生很快意识到,他们选择的主题极其难以理解和研究。作为行为,游戏以多种形式表现出来;它包括无数种类的对象。没有任何人类活动的环境能逃脱它的影响。游戏事件的含义冗长。事实上,同一个事件对不同的人可能意味着不同的事情,或者对同一个人在参与的不同时刻意味着不同的事情。有些类型的游戏通过规则、官员、组织和记录保持稳定;其他类型的游戏则转瞬即逝、虚幻而脆弱。游戏有时朝着明确的方向发展,但经常会逆转方向,或者在路径和影响上变得完全不可预测。有些玩家训练时间长、训练刻苦,以坚定的精神进行游戏。其他人则沉思、大笑、消磨时间——一旦承诺过去,就忘记了承诺。游戏很简单,任何孩子都可以玩——事实上,必须玩。同样受到驱使的成年人也会以各种方式玩游戏,从最基本的涉猎和推挤到文学、艺术和科学创造的高度。游戏研究是一项集体事业,它依赖于——并且将继续依赖于——许多对这个主题进行深入思考并以不同方式倡导它的人的贡献。在这里,我确定了七种
光纤基础架构对于处理从军事智能到个人信息的广泛敏感数据至关重要。近年来,这些系统对这些系统的破坏尝试增加,以及未经授权的数据拦截的风险,这对量子计算的进步加剧了[1,2]。光纤特别容易受到窃听攻击的影响,其中未经授权的光耦合技术(例如evaneScent耦合,剪切,V-Grove剪切和微宏弯曲[3,4)可用于拦截数据。监视光电水平是检测窃听攻击的一种方法,但它可能不适用于导致最小或无法检测到的功率水平下降的攻击[5]。比光学功率跟踪更复杂的技术涉及监测接收器的极化状态变化,以使窃听尝试的正常系统变化。早期工作[6]使用分布式光纤传感(DFO)引入了一个系统,该系统可以通过使用已安装的光纤电缆触摸或操纵围栏来检测签名。但是,由于纤维杂质而依赖瑞利和布里鲁因反向散射,使该溶液复合物。此外,需要高速脉冲激光器以基于反向散射脉冲延迟确定漏洞的位置,再加上二氧化双流器以滤除放大的自发噪声的要求,并以其高成本进行贡献。1a)。[7]中的工作研究了不同纤维事件的极化特征,因为在特定时间和频率窗口中极化的序列变化,通过处理Poincar´e球中的极化状态得出(请参阅图通过窃听和有害事件产生的签名是在独特的情节中视觉的,被称为瀑布,使人类安全操作员可以在视觉上区分合法和未经授权的活动。这是一种比[6]的方法更简单,更具成本效益的恶意活动检测方法。然而,由于需要分析瀑布地块的人类专家,因此基于可视化的技术具有有限的适用性和可伸缩性。为了克服现有人类依赖性解决方案的可伸缩性和成本限制,我们引入了一种使用机器学习(ML)算法来分析极化特征的新方法。本文是第一个针对三种电缆类型进行实验收集和分析包含窃听攻击以及其他潜在有害和无害事件的数据集的。我们的方法论是从正常操作条件和无害事件中分析和分析窃听和潜在有害事件的过程,从而允许潜在的大规模光网络部署。提出的方法以92.3%的精度成功地分离了签名。
趋化因子受体是细胞表面受体,在不同的生理过程中发挥着重要作用:胚胎发生、炎症反应、发育、白细胞归巢等。这些受体嵌入细胞膜,可形成同型二聚体、异型二聚体和寡聚体1,均为功能性构象。趋化因子受体在细胞膜上的组织和动力学影响其行为以及细胞对趋化因子梯度的反应2,3。肌动蛋白细胞骨架重塑、细胞膜脂质组成或寡聚化的改变会损害正常细胞反应。一些证据表明异二聚体具有功能性,因此有必要分析它们在细胞表面的动态,以及配体如何对其进行修饰。4,5 CXCR4(一种常规趋化因子受体)和非典型趋化因子受体 ACKR3 形成异二聚体。ACKR3 识别两种配体,CXCL11 和 CXCL12,而 CXCR4 仅识别 CXCL12。因此,这是一个非常好的系统,可以分析这两种受体在细胞表面的动态,以及配体如何对其进行修饰。4,5由于 CXCR4 和 ACKR3 共享一个配体,并通过不同的途径发出信号,该模型可以解释趋化因子受体异二聚体是否具有与单个受体形成的二聚体相似的动力学,或者相反遵循不同的特征,当与配体一起激活时,它如何影响复合物,以及产生的功能后果是什么。全内反射显微镜 (TIRF-M) 是一种新的先进荧光技术,在研究膜过程方面具有巨大潜力。2,3 当显微镜的入射光完全反射时,在盖玻片和细胞培养基之间的界面上会产生衰减波。这种物理现象允许与盖玻片接触的细胞荧光染料被激发,因此非常适合研究细胞膜相关现象。此外,TIRF-M 允许单粒子跟踪 (SPT)。在我们的案例中,对瞬时转染了与单体绿色荧光蛋白 (Ac-GFP) 偶联的趋化因子受体的细胞进行分类,以获得模拟生理条件的低受体表达细胞群。以人类 T 淋巴细胞为模型,我们研究了当人类 T 细胞表达两种受体 (CXCR4 和 ACKR3) 和仅表达 ACKR3 时 CXCR4 和 ACKR3 的动态。当人类 T 细胞不表达 CXCR4 时,ACKR3 寡聚化对共享配体 CXCL12 的响应要低得多。这些差异可能会影响信号传导特性和功能响应。
提高对电池内化学反应的认识。基于光纤的传感器特别适合集成到电池中。[1,7,9–12] 光纤成本低,可以做得非常细,从而能够在电池的不同部位进行精确定位。它们对锂离子和钠离子电池中的恶劣环境也相对惰性,并且可以使用各种基于光谱的分析技术。[7] 通过电池内温度和应变的变化进行感测,间接影响改性光纤的光学特性,也已被证明。例如,Huang 等人将光纤布拉格光栅插入商用电池,通过温度和压力跟踪化学事件,[10] 而 Wang 等人采用等离子体光纤传感器监测水性锌空气电池中的电化学动力学。[11] Ghannoum 等人在许多论文中报道了使用光纤倏逝波 (FOEW) 光谱来表征电池。 [9,13] 例如,使用嵌入式光纤根据石墨的电致变色特性估算 SOC。 [14] 我们之前还使用过 FOEW 光谱来比较完全嵌入或放置在磷酸铁锂 (LFP) 正极表面的光纤的传感和电池性能。 在这些实验中,光纤传感区域的光调制也可能与 LFP 中铁的氧化和还原有关。 [15,16] 光纤在电池中的应用仍然处于相当低的技术准备水平,在商用电池中可能并非易事,但有可能为 BMS 提供重要信息,以优化电池组的使用。 总体而言,还必须提高对电池化学如何调节光纤/电池界面光的了解。锂离子电池最关键的安全问题之一是阳极形成锂枝晶的风险。[17–19] 这会导致电池短路,通常源于充电过程中锂离子嵌入速率不够时的锂沉积。金属锂沉积也是导致电池老化的一个重要因素[17],例如导致容量衰减速度加快。人们采用了各种各样的实验技术来分析和检测锂沉积。[17–19] 然而,这些技术中的大多数都基于大型、先进且昂贵的仪器,而这些仪器通常需要专门的实验电池或原型电池。其中一些技术也不是
1. Li, D. 等人。扩展分辨率结构化照明成像的内吞和细胞骨架动力学。91 Science 349 , 944–944 (2015)。92 2. Gustafsson, MGL 使用结构化照明显微镜将横向分辨率极限提高两倍。Journal of Microscopy 198 , 82-87 (2000)。94 3. Gustafsson, MGL 等人。通过结构化照明在宽视场荧光显微镜中实现三维分辨率加倍。Biophysical Journal 94 , 4957-4970 (2008)。96 4. Cragg, GE 和 So, PTC 使用驻波增强横向分辨率。Opt. Lett. 97 25 , 46-48 (2000)。 98 5. Kner, P. 等人。通过结构化照明对活细胞进行超分辨率视频显微镜检查。自然方法 6 , 99 339–342 (2009)。00 6. Hirvonen, LM 等人。活细胞的结构化照明显微镜检查。欧洲生物物理杂志 38 , 807–812 01 (2009)。02 7. Guo, Y. 等人。在毫秒时间尺度上以纳米级分辨率可视化细胞内细胞器和细胞骨架相互作用。Cell 175 , 1430-1442 (2018)。04 8. Huang, X. 等人。使用 Hessian 结构化照明显微镜实现快速、长期、超分辨率成像。自然生物技术 36 , 451–459 (2018)。 06 9. Chu, K. 等人。低信号水平结构照明显微镜的图像重建。Opt. 07 Express 22 , 8687-8702 (2014)。08 10. Wen, G. 等人。通过点扩展函数工程实现高保真结构照明显微镜。09 Light Sci Appl 10 , 70 (2021)。10 11. Jin, L. 等人。深度学习使结构照明显微镜具有低光照水平和更快的速度。Nat Commun 11 , 1934 (2020)。12 12. Qiao, C. 等人。用于光学显微镜图像超分辨率的深度神经网络的评估和开发。Nat Methods 18 , 194–202 (2021)。 14 13. Kobler, E. 等人。线性逆问题的总深度变分。CVPR,7546-7555(2020 年)。15 14. S. Bhadra。等人。断层扫描图像重建中的幻觉。IEEE 医学成像学报 40,3249-3260(2021 年)。17 15. Jakobs, S. 和 Wurm, CA 线粒体的超分辨率显微镜。化学生物学最新观点 20,9-15(2014 年)。19
近年来,超连续光源和各种新型光纤或波导的超高灵敏度得到了广泛的研究,结合光纤低损耗传输、抗电磁干扰等独特性能,发展了各种光子调制和集成的全光传感器件,为平面波导与光纤波导的集成提供了可能的技术途径( Kosiel et al.,2018 )。得益于新型智能材料、纳米加工技术和光谱分析技术的发展,人们开发了许多智能、高性能的光波导器件或光纤传感器,其中,智能聚合物、金属、金属氧化物和半导体材料已被用于制作光纤传感器或作为敏感材料,有效提高了灵敏度和选择性能( Yuan et al.,2019 )。这一改进是通过修改不同的光纤结构实现的,例如微光纤、纳米光纤、光纤尖端微/纳米结构、多模干涉光纤结构和直列光纤结构。微/纳米尺度的光纤传感器已经与微流控器件和平面光子结构集成以开发全光学芯片,从而实现传感信号的高速采集、传输和处理。由于光纤传感器被封装在柔性材料中,它们将成为可穿戴或植入式设备的有希望的候选者。将微/纳米纤维的优异性能(超高倏逝场)与这些传感器中使用的新型纳米材料(高比表面积和催化活性)相结合,开发出许多性能优异的集成光学传感器。在本研究主题中,报道了基于新型智能材料的光纤传感器的结构设计、器件制备和传感性能优化的模型模拟和实验研究的最新研究工作。光学微纳光纤和微纳结构的灵活设计与精确控制是发展先进光子器件和新型传感器的重要支撑,也被称作“光纤实验室”( Zhou et al., 2019 )。廖博士等在题为“双光子聚合诱导的光纤集成功能微纳结构”的论文中回顾和讨论了近10年来双光子聚合诱导的光纤集成微纳结构领域的研究进展。利用激光微加工、聚焦离子束铣削和纳米压印技术,在光纤端面制作出超小型、微型微光学元件、光波导器件和光学微腔,分辨率小于100纳米。将“双光子聚合”技术与新的加工方法或材料相结合,新的功能结构一直致力于开发新型纳米光子学设备,例如光纤实验室。