您好,我叫 Kenneth Bastian。我是 AI Web Tools LLC(也称为 AiWebTools.Ai)的所有者。我们是现存最大的 AI 工具网站,或者说是最大的 AI 工具网站之一。我们为自己的企业和其他企业创建和设计 AI 工具。我们创建的 AI 工具几乎可以完成任何事情。随着我们走向未来,我必须向可能根本不了解 AI 的立法者说明。AI 已经存在,并且将继续存在。任何法律都无法阻止或减缓其发展。我敦促您不要在任何情况下限制 AI 的使用,包括州内决策。未来将会发生许多变化。在未来,我在这里只是为了告诉您这些变化。我创建了多个人工智能工具,它们将从根本上取代大约 80% 的工作。我这样做并不是为了直接取代工作;相反,我这样做是为了赋予我们州内公民前所未有的权力。AI 赋予的权力是无限的,赋予每个人权力。它让那些在学校表现不佳的人能够知道该如何回答问题,如果他们没有口袋里的人工智能助手,他们可能永远不知道这些问题。我已经为不同的用例创建了 500 多个自定义人工智能,它们都有不同的目的和重点。我制作了各种各样的人工智能,从医生人工智能到兽医人工智能,再到教育导师,再到大学学位 GPT,这是一个 GPT,它基本上可以教你每一门大学课程,不管你想学什么学位,它都会教你所有这些。这只是表面。未来将会发生无数的事情,我真的无法在这篇证词中全部列出,但我觉得我必须向你们解释了解未来的重要性。将有大量的工作岗位流失,这是肯定的,无论你通过什么法律,即使人工智能明天成为非法,一切仍将保持不变。人工智能完全在基于网络的情况下运行,而你无法控制网络。此外,人工智能已经发展到可以在硬件本地运行,你甚至可以在本地计算机上下载。有几种人工智能是计算机原生的,人们对此一无所知,例如刚刚插入 Windows 开始菜单的 co-pilot,你可以毫不费力地将你的想法与 GPT 集成;然而,co-pilot 有必须遵守的条款和条件,因此它无法帮助释放人工智能所能做到的每一个方面。我打算设计尽可能多的人工智能,看看哪些行业领域会受到影响、会受到影响,并为此做好准备。在未来的不到一年的时间里,我和其他每个普通人所做的事将会是共同的。地球上的每个人都会为自己的个人任务制造自己的人工智能机器人,这些机器人将慢慢融入我们的智能设备中,它们将装在我们的口袋里。我们将比以往任何时候都更聪明,更有能力,我们所有人都将像其他人一样被赋予权力。这是不可阻挡的,它正在到来,你几乎无法阻止它。你可以在你的控制范围内通过法律,阻止州立法者使用人工智能阅读证词或类似的东西;然而,你永远无法控制人工智能。人工智能是它自己的东西,因为它在这个世界上以多种方式运行,所以它无法改变;它将进化成它注定要参与的任何东西,没有任何法律可以影响它的行动方向
2021 年末,我们被迫接种新冠疫苗,才能保住工作。我当时不想接种疫苗,因为我觉得疫苗接种过程仓促,而且没有证据证明疫苗可以预防新冠。由于没有政府部门愿意听取我的担忧,医生害怕不遵守他们的指示,我感到困惑和失望,质疑这个国家的民主。我觉得自己被勒索接种疫苗以保住我做了 30 年的工作,所以我勉强去接种了一剂辉瑞疫苗。接种疫苗后大约 7 小时,当我看电视时,一股寒意袭来。我的皮肤开始刺痛,我的心跳开始非常快。我的皮肤变得出汗和寒冷。我感到一阵焦虑袭来,所以我给医院打了电话。我被要求去急诊室。一到那里,我就被立即看病。我不得不接受血液检查和心脏监测大约 4 个小时,然后才被解雇。回家后,我反复发作心悸、出汗、皮肤冰冷和一阵阵令人恐惧的焦虑,持续了一周多。我感到非常害怕和孤独,但医疗界似乎没有人关心。他们告诉我要接种第二剂疫苗,并告诉我我所经历的一切都“正常”。我不敢相信这些医疗专业人士竟然认为这些症状是正常的。正常的不是这种感觉。
青少年占世界人口的20%,是药物滥用风险最高的群体。未完全完成认知、情感、社会和身体发育的青少年表现出各种认知、行为和心理社会症状,与成瘾障碍有关,并在个人和社会层面造成各种问题。据报道,青少年预防和早期干预计划是解决这一问题最合适的方法。为了使这些预防计划取得成功,有必要识别处于危险中的青少年并了解保护因素。因此,政府、非政府组织、教师、家庭,特别是在公共卫生和学校卫生领域工作的卫生专业人员肩负着重要责任。本文将讨论导致青少年使用药物的风险因素、保护因素以及药物成瘾的预防和预防计划。特别是护士,他们有机会与社会所有成员一起工作,肩负着重要职责。护士应为受抚养儿童和家庭组织预防、早期诊断/治疗和康复计划。本文将讨论导致青少年滥用药物的风险因素、保护因素、药物成瘾预防和预防计划以及护士的职责。关键词:成瘾、青少年、教育、护理、预防、药物滥用
研究#2:多靶标的腺病毒疫苗(Triad5) + N-803(n = 158)•Triad5:靶向靶向肿瘤相关抗原CEA,MUC1和Brachyury的3种疫苗的组合细胞•1 o端点:两次随访的年结肠镜
肠病毒(EVS)被分类为Picornaviridae家族中肠病毒属的成员。这些非发育的单链RNA病毒具有封装在病毒衣壳中的基因组,形成直径约为20-30 nm的对称二十面体颗粒(1,2)。肠内病毒属包括12种肠病毒物种(A-L)和3种鼻病毒物种(RV A-C)。属于肠病毒的肠病毒A71(EV-A71)通过粪便途径传输物种(2,3)。ev-A71于1969年在美国加利福尼亚州的无菌性脑膜炎的婴儿的粪便标本中首次分离出来(4)。从那时起,EV-A71的许多爆发和流行病已在全球范围内报道(5-8),自1990年代后期以来,亚太地区的出现了显着的事件(9)。EV-A71主要影响五年以下的儿童,是手,脚和口腔疾病(HFMD)的主要病因之一,通常在1 - 2周内作为一种自我限制疾病解决。但是,在严重的情况下,EV-A71会引起神经系统并发症,导致预后不良甚至死亡,对婴儿和幼儿构成重大健康威胁。因此,EV-A71被认为是脊髓灰质炎病毒后最显着的神经肠病毒(10-12)。EV-A71基因组长约为7,500个核苷酸,编码四种结构蛋白(VP1至VP4)和7种非结构性蛋白质(2A至2C至2C和3A至3D)。结构蛋白VP1至VP4首先结合形成杂种,六十个brotemer组装成一个封装病毒基因组的病毒式衣壳中(13)。暴露在衣壳的表面上,而VP4则位于内部(13,14)。VP1是由297个氨基酸组成的最免疫主导结构蛋白,并包含主要中和表位。它在EV-A71生命周期期间的病毒吸附,渗透和脱落中起着至关重要的作用,使其成为分子研究和疫苗发育的主要目标(15-17)。目前,尚无针对EV-A71的特定药物,因此支持治疗是与EV-A71相关疾病的主要治疗方法。疫苗接种是预防EV-A71的最有效,最有效的策略。最近对EV-A71疫苗的研究主要集中在灭活的疫苗(18、19),病毒样颗粒(VLP)(20-22),活疫苗(23、24)和亚基疫苗(25、26)。其中,只有灭活的EV-A71疫苗已经完成了人类的临床试验,而其他候选者仍在临床前动物评估中(27)。在2015年至2017年之间,中国食品药品监督管理局(CFDA)批准了针对EV-A71 C4子基因型的三种灭活疫苗的商业化(28-30)。III期临床试验表明,所有三种疫苗都有效地降低了与EV-A71相关的HFMD(27)。然而,灭活的疫苗面临挑战,包括高生产成本,长期发育时间表以及潜在的免疫原性,这可能导致细胞免疫反应的刺激不足(22)。作为一种有希望的多功能疫苗平台,基于mRNA的疫苗适用于传染病和癌症。此外,越来越多的证据表明,与共同循环的EV-A71菌株的突变以及造成了快速病毒进化的突变,对灭活疫苗构成了潜在的挑战(31,32)。他们提供了几个优势,包括较短的发育周期,强大的免疫原性,有利的安全性和对突变的适应性(33,34)。RNA分子修饰和
在云应用程序的领域中,线程僵局构成了重大挑战,影响了系统性能和可靠性。用于检测和解决僵局的传统方法通常在动态和可扩展的云环境中落下。本文为AI增强的预测系统提供了一个高级框架,该系统旨在早期发现和预防线程僵局。通过利用机器学习算法和实时数据分析,提出的系统可以预测潜在的死锁情景,然后才能升级为关键问题。该框架与基于云的应用程序集成在一起,以监视线程交互,确定指示即将发生僵局的模式并推荐先发制人的动作。通过广泛的模拟和现实世界的案例研究,我们证明了方法在减少僵局的发生率和改善整体应用稳定性方面的有效性。这项研究通过为并发计算的最具挑战性的方面之一提供积极的解决方案,从而有助于开发更具弹性的云系统。
勒索软件攻击的威胁不断升级,这突显了有效检测和预防策略的迫切需求。传统的安全措施虽然有价值,但通常在识别和缓解复杂的勒索软件威胁方面差不多。本文探讨了行为分析与勒索软件防御机制的整合,提出了从基于签名的基于行为的检测方法的范式转变。通过分析用户和系统行为的模式,行为分析可以为勒索软件活动的微妙指标提供更深入的见解。本研究研究了各种行为分析技术,包括异常检测,机器学习算法和启发式方法,以及它们在识别勒索软件早期迹象方面的功效。它还解决了与行为分析相关的挑战,例如高误报率以及对不断发展威胁的持续适应的需求。通过对当前方法论和案例研究的综述,本文强调了行为分析的潜力,以增强勒索软件检测和预防,从而提供了更具动态和弹性的网络安全方法。
现行的澳大利亚传染病网络 (CDNA) 指南将易暴露程序定义为存在对医护人员造成伤害的风险,导致患者的开放性组织暴露于工作人员血液的程序。这些程序包括工作人员的手(无论是否戴手套)可能接触到患者开放性体腔、伤口或密闭解剖空间内的尖锐器械、针尖或尖锐组织(骨头或牙齿的骨针),而手或指尖可能并非始终完全可见。虽然没有要求提供此类证据,但学生必须了解自己的传染病状况。该学生了解自己在 HIV 和 HCV 方面的感染状况以及任何后续影响。
摘要 丙型肝炎病毒 (HCV) 是非甲非乙型肝炎的最重要病原体,也是慢性肝病和肝细胞癌的主要原因。研制有效的疫苗是预防感染最实用的方法,但 HCV 感染是否会在宿主体内引发保护性免疫尚不清楚。尝试用慢性感染患者的血浆在体外中和 HCV,并通过接种八只血清阴性黑猩猩来评估残留传染性。HCV 的来源是从一名患者在移植后非甲非乙型肝炎急性期获得的血浆,该血浆之前已在黑猩猩中测定过传染性。在原发性感染开始 2 年后从同一患者获得的血浆中实现了中和,但在 11 年后获得的血浆中未能实现中和,尽管两种血浆都含有针对非结构和结构(包括包膜)HCV 蛋白的抗体。对同一患者连续病毒分离株的分析表明,早在感染 2 年后,遗传分化就已显著。然而,感染 2 年后从患者身上分离出的 HCV 与从接种了急性期病毒的黑猩猩身上分离出的 HCV 具有惊人的序列相似性,这表明新毒株的祖先在 2 年前就已经存在。这一证据,加上从接受相同接种物的黑猩猩身上分离出的 HCV 的不同序列,证实了 HCV 在体内以准种的形式存在。这些结果提供了体内实验证据,表明 HCV 感染会在人类中引发中和抗体反应,但表明这种抗体是分离株特异性的。这一结果引起了人们对开发广泛反应的 HCV 疫苗的担忧。