馈送前向神经网络是相关多体量子系统的新型变异波函数。在这里,我们提出了一个适用于具有实值波函数的系统的特定神经网络ANSATZ。它的特征是编码具有离散输出的卷积神经网络中量子波函数的最重要的坚固符号结构。通过进化算法实现其训练。我们在两个Spin-1 /2 Heisenberg型号上测试了我们的变异ANSATZ和训练策略,一种在二维方形晶格上,一个在三维的Pyrochlore晶格上。在前者中,我们的安萨兹(Ansatz)以高精度收敛到有序相的分析符号结构。在后者中,这种符号结构是未知的,我们获得的变异能量比其他神经网络状态更好。我们的结果证明了离散神经网络解决量子多体问题的实用性。
。cc-by-nd 4.0国际许可证(未经同行评审证明)获得的是作者/资助者,他已授予Biorxiv的许可证,以永久显示预印本。它是制作
©2025 Morningstar Benelux。保留所有权利。有关投资基金和基金投资组合的信息:(1)由MorningStar拥有,并且已获得许可证,(2)只能根据合同的许可条件来使用,(3)必须是信息目的,并且不得将其视为Desonkesdvies Van Moringsadvies Van Moringsadvies Van Moringsadvies Moringsadvies的投资。Morningstar不接受根据显示的信息对决策的任何责任。
COVID-19大流行展示了人类免疫系统和SARS-COV-2之间的共同进化种族,反映了进化生物学的红皇后假设。免疫系统产生靶向SARS-COV-2峰值蛋白的受体结合结构域(RBD)的中和抗体,对于宿主细胞的浸润至关重要,而病毒会逃避抗体识别。在这里,我们建立了一个合成的协同进化系统,该系统结合了抗体和RBD变体库的高通量筛选与蛋白质诱变,表面显示和深层测序。此外,我们训练一种蛋白质语言机器学习模型,该模型可以预测抗体逃离RBD变体。合成进化揭示了中和抗体和SARS-COV-2变体的拮抗和补偿性突变轨迹,从而增强了对这种进化冲突的理解。
本演讲将重点讨论在数字农业背景下将研究转化为可行的管理的瓶颈。使用更多数据驱动的方法,包括概率分析,新技术(如人工智能(AI),卫星图像,用于领域尺度量产率预测的计算机愿景)的整合以及新数据可视化应用的开发都是帮助生产者改善农产品决策和下一个绿色革命的相关途径。
Abstract In the year 1971, the world's biggest structural biology collaboration name — The Research Collaboratory for Structural Bioinformatics (RCSB), was formed to gather all the structural biologists at a single platform and then extended out to be the world's most extensive structural data repository named RCSB-Protein Data Bank (PDB) (https://www.rcsb.org/) that has provided the服务已有50多年的历史,并继续为结构数据的发现和存储库提供遗产。RCSB已从合作网络发展为一个成熟的数据库和工具,其中包括大量蛋白质结构,含核酸酸的结构,模型结构和AlphaFold结构,最好的是,它每天都在随着工具和视觉体验的计算进步而扩展。在这篇评论文章中,我们讨论了RCSB如何成为一个成功的协作网络,其在每十年的扩展以及它如何帮助开创性的研究。还讨论了正在帮助研究人员,每年的数据沉积,验证,处理和建议的PDB工具,这些工具还可以帮助开发人员在未来几年的改善。本评论将帮助未来的研究人员了解RCSB及其在每十年的完整历史,以及如何在各个科学领域开发各种未来的协作网络,并通过将RCSB作为案例研究来成功。
coelacanth,Gingko,Tuatara等遗物是以前在生态和分类学上更多样化的谱系的残余物。它提出了为什么它们目前贫穷,生态限制并且通常容易灭绝的问题。估计杂合性水平和人口统计学历史可以指导我们对遗物物种的进化史和保护性的理解。然而,与脊椎动物相比,很少有研究重点是遗物无脊椎动物。我们对Baronia brevicornis(鳞翅目:木瓜科)的基因组进行了测序,该基因组是一种濒危物种,是所有燕尾蝴蝶的姐妹物种,是所有现存蝴蝶中最古老的谱系。从干燥的标本中,我们能够同时生成长阅读和短读数据,并作为男爵的基因组为406 MB的基因组。与其他燕尾黄油蝇相比,我们发现了相当高的杂合性(0.58%),这与其濒危和危险状态形成鲜明对比。考虑到重组与突变的高比例,人口统计学分析表明,在过去一百万年前开始的有效人口规模急剧下降。此外,男爵基因组用于研究乳头状科中的基因组大小变异。基因组大小主要是通过可转座的元素活动来解释的,这表明大基因组似乎是燕尾蝴蝶中的一个衍生特征,因为最近的可转座元素活动是最近的,并且涉及物种之间不同的可替代元素类。第一个男爵基因组提供了一种资源,用于协助旗舰和遗物昆虫物种的保护以及了解吞咽基因组进化。