尽管该领域的进步持续发展,但预测RNA的3D结构是一个显着的挑战。尽管Al-Phafold成功解决了蛋白质的问题,但RNA结构预测由于蛋白质和RNA之间的基础差异而引起了困难,这阻碍了直接适应。Alphafold的最新版本Alphafold 3扩大了其范围,以包括多个不同的分子,例如DNA,配体和RNA。虽然本文讨论了最后一个CASP-RNA数据集的结果,但RNA的性能范围和局限性尚不清楚。在本文中,我们对RNA 3D结构的预测中Alphafold 3的性能进行了全面分析。通过五个不同的测试集的广泛基准测试,我们讨论了Alphafold 3的性能和局限性。我们还将其表现力与十种现有的最新最新的,基于模板和深度学习的方法进行了比较。我们的结果可以在evryrna平台上免费获得:https:// evryrna。ibisc.univ-evry.fr/evryrna/alphafold3/。
非编码RNA参与生物学过程和疾病使其特征至关重要,从而需要对可以对大型非编码RNA进行分类的计算方法。近年来,深度学习在各个领域的成功导致其应用于非编码RNA分类。已经开发了多个新颖的架构,但是这些范围并未被当前的文献评论所涵盖。我们对最先进的不同方法和数据集进行了详尽的比较。此外,文献缺乏客观的基准。我们执行实验,以公平地评估流行数据集上非编码RNA分类的各种工具的性能。我们还测量计算时间和CO 2排放。关于这些结果,我们评估了不同建筑选择的相关性,并提供了未来方法的建议。数据集和可再现代码可在https://evryrna.ibisc.univ-evry.fr/evryrna/ncbench上找到。