• 使用优化参数的 Renishaw AM400 机器制造了无裂纹的 HAYNES ® 282 ® ,这是一种专为高温结构应用而开发的超级合金。打印合金中孔隙率的降低与激光参数有关,包括激光速度、图案填充距离和其他因素。 • L-PBF 制造的 HAYNES ® 282 ® 的典型结构由柱状结构、等轴晶粒和超细晶粒组成。加工参数对强化相的析出起着至关重要的作用,在使用棋盘和蛇形图案打印的合金中分别观察到球形和立方体强化相。 • L-PBF 制造的 HAYNES ® 282 ® 在打印和热处理状态下都表现出优异的机械性能,具有高屈服强度和极限拉伸强度 (UTS)。
在其核心上,热交换器加热涉及将热能从热源转移到流体或气体,然后将热量分配到所需的位置。热交换器充当介体,通过传导,对流和在某些情况下是辐射的结合来促进这种转移。典型的热交换器由两条独立的流体路径组成:一种用于加热介质,通常是蒸汽,热水或热导电油,另一个用于加热的流体,可以是空气,用于加热系统的水,或工业设置中的处理流体。
摘要:热交换器是一种用于在两种或多种不同温度、热接触的流体之间传递热能的装置。热交换器广泛应用于不同类型的工业和家庭应用。两种起始温度不同的流体流过热交换器。一种流体流过管(管侧),另一种流体流过管外但在壳体内(壳侧)。挡板放置在壳侧空间,提供壳侧流体的横向流动方向,因此可以实现流体之间更密集的热交换。此外,管束带有挡板,这有助于减少设备的偏转和振动。在目前的研究中,对包含不同方向的扇形挡板的单程、横向流壳管式热交换器进行了实验,以计算一些参数,例如传热速率和压降。壳管式热交换器的设计包括机械设计和热设计。机械设计包括主壳体在内外压降下的设计、管道设计、挡板设计等。热设计包括评估所需的有效表面积、管道数量以及找出对数平均温差。使用有效性 NTU 方法开发了热模型。关键词:管道设计、挡板、压降、对数平均温差、NTU 方法、改变直径、实验、热效率。
我们已尽一切努力确保详细信息准确无误。但是,ACV UK Limited 不保证任何信息的准确性或完整性,也不对信息中的任何错误或遗漏承担责任。ACV UK Limited 保留进行更改和改进的权利,这可能需要更改产品规格,恕不另行通知。
C118L-E:在冷却器应用中针对R410A进行了优化的蒸发器,从40到200kW。C118-E:用于冷却器应用中中等密度制冷剂的蒸发器,从40到200kW。C118L-C:在冷却器应用中优化的冷凝器,从40到200kW。C118-C:在冷却器应用中针对中密度制冷剂优化的冷凝器,从40到200kW。H118L-C:在20至150kW的热泵应用中针对高密度制冷剂进行了优化的冷凝器。H118-C:在20至150kW的热泵应用中针对中等密度制冷剂优化的冷凝器。H118L-E:在20至120kW的热泵应用中针对R410A进行了优化的蒸发器。H118-E:中等密度制冷剂在热泵应用中的蒸发器,从20至120kW。
免责声明本文件是作为由美国政府机构赞助的工作的帐户准备的。美国政府和劳伦斯·利弗莫尔国家安全,有限责任公司,或其任何雇员均不对任何信息,设备,产品或流程的准确性,完整性或有用性承担任何法律责任或责任,或承担任何法律责任或责任,或者代表其使用不会侵犯私有权利。以本文提及任何特定的商业产品,流程或服务,商标,制造商或其他方式不一定构成或暗示其认可,建议或受到美国政府或Lawrence Livermore National Security,LLC的认可。本文所表达的作者的观点和意见不一定陈述或反映美国政府或劳伦斯·利弗莫尔国家安全,有限责任公司的观点和观点,不得用于广告或产品代表目的。
这项工作考虑了NA热管的各种功率转换入口温度(PCIT)为1100 K,1150 K和1200 K,而每种PCIT的LI热管,1100 K,1150 K,1150 K,1200 K和1400 K,并确定和分析了组合热交换器和反应器子系统的质量和压力损失。na显示出比相同几何形状的LI的总工作温度低,最大热量能力的五分之一。因此,整个基于NA的子系统最终的质量是基于LI的子系统的三倍,给出了所需的热管数五倍。在1100 K的低PCIT下,基于NA的子系统表现出最低的压力损失,因为较大的总横截面流域和相对较低的摩擦压力损失。但是,随着PCIT的增加,摩擦压力损失增加,导致1200 K PCIT的压力损失比基于LI的子系统更高。基于LI的子系统由于在此温度下的Brayton工作流体密度低,因此在1400 K PCIT处所有分析病例的压力损失最大。
摘要 规划大型地源热泵 (GSHP) 系统的运行需要精确的地下管换热器 (BHE) 模型,这些模型不需要大量计算。在本文中,我们提出使用测量数据进行参数估计作为改进 BHE 分析模型的一种方法。该方法已应用于运行超过 3 年的 GSHP 系统。BHE 的建模负载和测量负载之间的偏差从 22% 降低到 14%。通过改变校准数据的时间分辨率和季节来测试校准数据集的影响。我们得出结论,时间分辨率必须足够高才能区分不同参数的影响,并且必须对注入和提取(季节)使用不同的模型参数。该方法还应用于已监测 10 年的 GSHP,结果表明,通过每年更新参数可以提高模型的准确性。
引言肾结石症在其一生中至少有9%的人居住在美国,其患病率正在增加(1)。超过80%的肾结石含有钙,草酸钙是所有肾结石至少三分之二的主要成分(2)。肾结石病在5年内的高复发率约为50%(3)。当前减少草酸钙结石复发的方法包括一般措施,例如液体摄入量增加,饮食盐和草酸盐限制。此外,根据尿代谢异常,例如高钙尿和/或低脂肪尿素,使用噻嗪类利尿剂和柠檬酸钾。没有批准的药物用于治疗高氧甲里尿,这是草酸钙肾石石症的主要且常见的危险因素,最近公认的慢性肾脏病(CKD)进展的危险因素(4)。