A c 横截面积,[ m 2 ] A s , A h 总传热面积,[ m 2 ] β 表面密度,[ m 2 /m 3 ] 或整体压力梯度,[ Pa/m ] C p 恒压比热,[ J/ ( kgK )] Co 库仑数 d h 水力直径,[ m ] δ 翅片厚度,[ m ] ϵ 热交换器效率或湍流耗散,[ s ] 或翅片间距比 f c 核心摩擦系数 f 扇形 扇形摩擦系数 f 频率,[ Hz ] 或 Forschheimer 摩擦系数 G 质量流速,˙ m/A c , [ kg/ ( m 2 s )] γ 波纹间距比 h 对流膜系数 [ W/ ( m 2 K )] h f 压力损失,[ m ] η 0 , η f二次传热表面的有效性 j 科尔本系数 K c 入口损失系数 K e 出口损失系数 k 湍流动能,[ J/kg ] 或材料的热导率,[ W/ ( mK )] L , l 长度或翅片长度,[ m ] LMTD 对数平均温差,[ K ] M 马赫数 ˙ m 质量流量,[ kg/s ] µ 动态粘度,[ Pa · s ] N st 斯坦顿数 Nu 努塞尔特数 ν 运动粘度,[ m 2 /s ] P 周长,[ m ] 或流体压力,[ Pa ] Pr 普朗特数 Re 雷诺数 ρ 密度,[ kg/m 3 ] Q 或 ˙ Q 传递的热量,[ W ] Q 平衡 热交换器流之间的热平衡 Q 热 热交换器热侧发出的热量,[ W ] Q 冷热交换器的冷侧,[ W ] φ 流动面积与面面积之比或标准偏差 T 温度,[ K ] U 总传热系数 [ W/ ( m 2 K
结果与讨论:高温过程的火用效率值范围为 72% 至 100%,而低温过程的火用效率值范围为 2% 至 53%。这些效率取决于每个微反应器设计的可用源温度。产生净功率和使用工艺热之间存在权衡,特别是对于高温过程。考虑了三个热交换器位置:涡轮机之前(600 ℃ )、涡轮机和再生器之间(370 ℃ )和再生器之后(192 ℃ )。气化等高温过程需要的温度太高,不切实际。中温过程更适合涡轮机和再生器之间的热交换器,同时也可在涡轮机之前操作。巴氏灭菌和厌氧消化等低温过程可以在再生器后使用废热,不会影响发电。这些发现对于优化核微反应器的热量利用和与全球气候倡议保持一致非常有价值。
本文档侧重于单一措施 - 中央水力水到水地热泵(GHP)。水力加热,通风和空调(HVAC)系统在商业建筑中很常见,并且经常使用锅炉和冷却器作为加热和冷却的主要设备。此措施重点介绍了水力HVAC系统的改造,将接地耦合的水对水泵用作主要设备。该措施还允许使用补充系统来满足高于接地热交换器大小以交付的加热和/或冷却负载,例如,对于地面热交换器的尺寸小于峰值加热或冷却载荷的情况,以降低资本成本。此措施适用于Comstock代表的13%(当前具有提供加热或冷却的水力系统的建筑物,或两者兼而有之)。作为此改装度量的一部分,部分水文系统(使用加热或冷却,但不是两者)被转换为完全水文系统。减少建筑物负荷措施对地面热交换器尺寸的影响是未来工作的潜在领域。
1.备用加热元件 2.U 型管热交换器 3.维修人孔 4.镁阳极 5.温度和压力释放阀 6.排气阀 7.膨胀容器 8.循环泵 9.太阳能传感器 10.隔离阀
性能监控/趋势:PTMS(IPP、过滤器、储液器、聚结器等)液压系统(泵、过滤器、储液器、蓄能器)燃油系统(泵、阀门、热交换器)武器舱门驱动(泵速和斜盘角度)旋转执行器、EHA 武器架 OBIGGS 过滤器
而不是产生热量,而是地热系统将热量从一个地方传递到另一个地方。通常称为封闭环系统的热交换器被埋在地面中,并通过一系列管道循环水基溶液。该解决方案捕获了存储的太阳能温暖,并将其交给房屋中的单元。
热湿压缩空气进入空气对空气热交换器 (1),在此被离开干燥器的干燥空气预冷。制冷剂压缩机 (3) 压缩制冷剂气体并将其推过冷凝器 (4),在此将其冷凝为高压液体。然后,制冷剂液体通过毛细管/校准孔 (5),以低压液体的形式计量进入蒸发器 (2)。微处理器通过“脉冲”控制电磁阀 (6) 的打开和关闭,使工作周期适应实际工作条件。在部分负荷条件下,只有一小部分制冷剂通过电磁阀 (7) 的校准孔口流向压缩机,因此消耗的能量较少。预冷空气进入蒸发器 (2),在那里被进入的制冷剂液体冷却到所需的露点,制冷剂液体改变相态并变成低压气体,适合在返回制冷剂压缩机 (3) 的吸入侧时继续该过程。然后,离开的冷干压缩空气返回到空气对空气热交换器 (1),在那里被进入的空气重新加热,以防止设备出汗。
热湿压缩空气进入空气对空气热交换器 (1),在此由离开干燥器的干燥空气进行预冷却。制冷剂压缩机 (3) 压缩制冷剂气体并将其推过冷凝器 (4),在此将其冷凝为高压液体。然后,制冷剂液体通过毛细管/校准孔 (5),以低压液体形式计量进入蒸发器 (2)。微处理器通过“脉冲”控制电磁阀 (6) 的打开和关闭,使工作周期适应实际工作条件。在部分负荷条件下,只有一小部分制冷剂通过电磁阀 (7) 的校准孔口流向压缩机,因此消耗的能量较少。预冷空气进入蒸发器 (2),在那里被进入的制冷剂液体冷却到所需的露点,制冷剂液体改变相态并变成低压气体,适合在返回制冷剂压缩机 (3) 的吸入侧时继续该过程。然后,离开的冷干压缩空气返回到空对空热交换器 (1),在那里被进入的空气重新加热,以防止设备出汗。
富士通将军今天宣布,已开发出具有前所未有的冷却性能的新一代可穿戴空调。从今天开始,这款新机型可以在线预订。该产品计划于 2025 年春季上市。新款可穿戴空调是 2021 年发布的富士通将军 Cómodo 装备的更紧凑版本。新款机型仍然拥有卓越的性能,能够将温度降低至环境空气温度以下 20°C,是一款易于使用、方便的颈部冷却器。之前独立的颈部冷却器和水冷式热交换器现在集成为一个无管设计。因此,不再需要佩戴缠绕在腰部的热交换器单元。现在只需 10 秒即可穿上该产品,比以前快三倍。大大提高的易用性使新产品对于建筑、物流、活动和其他需要移动性的行业的工人来说非常方便。
最大耐腐蚀性。最大热效率。最大热交换器寿命。CG Thermal 的 Umax® 高级陶瓷热交换器是镍合金、活性金属、石墨和石墨热交换器的高价值长寿命替代品,具有无与伦比的耐腐蚀性、热效率、低结垢和可维护性组合。卓越的耐腐蚀性 Umax® 陶瓷热交换器是您最具腐蚀性的传热应用的终极解决方案。它对高达 400 F 的几乎所有化学物质都具有普遍的耐腐蚀性。它们特别适合涉及混合酸、HF、HCL、高浓度 H2SO4、溴、氟或苛性碱的工艺。Umax 陶瓷非常坚硬,不受热冲击影响,具有出色的强度特性、防腐蚀且无污染。耐热冲击和抗机械冲击。Umax® 的抗压强度和抗弯强度分别是石墨的 50 倍和 10 倍。其抗弯强度甚至高于钽。其热性能同样出色,热导率是钽的 2 倍,且热膨胀率较低。