摘要:光学微/纳米图案的高质量制造的可用性为基于光学机械(OM)声音和光的相互作用而开发的可扩展电路和设备的道路铺平了道路。在这项贡献中,我们提出了一项有关OM腔的新研究,可以使其与紧密整合的波导对其耦合进行精确控制,这是增强模式激发和波浪能陷入诱因的必要条件,为波浪指导,滤波,滤波,填料,结合和传感打开了许多潜在应用的可能性。此外,可以避免对笨重的实验设置和/或光纤维耦合/激发的需求。同时,优化了在腔体中共鸣的机械和光学模式的质量因素,以及它们的OM耦合系数:两种激发的高度结合是实现其声音(AO)相互作用的先决条件。为此,腔体的横向大小已被抛物面,具有将腔分离的额外好处和远离耦合区域的集成波导。有限元方法已用于执行全波分析,并提供了有关正确描述光学散射和辐射所需的模拟设置的准确讨论。
Th 核中的低能同质异能态 (eV) 已引起人们的广泛兴趣,因为它可以用于设计超精密核钟[1-4]、光学范围的核激光器[5,6]和 VUV 范围的核发光二极管[7],也可以用于研究许多不寻常的过程:Th 在激光辐射下通过电子桥处的电子壳层激发和衰变[8-15],通过边界条件 [16]或化学环境 [17,18]控制同质异能能级衰变,Th 异构体的衰变[19]及其伴随的轫致辐射[20],精细结构常数和强相互作用参数变化的相对效应[21-23],长时间内衰变定律的指数性检验[24],等等。
图2带电荷中性尖端的ZLL的点光谱。(a)栅极可调sts的假颜色图显示-2 <𝜈 <2填充范围中的ZLL激发光谱,箭头指向-2 <𝜈 <-1(b)缩放光谱近2/3 = -2/3中的haldane sash特征。使用GAP的门范围测量FQH间隙。虚线跟踪A | DVG/DE | = 1个斜率在y轴上移动以与数据对齐。(c)图显示了绿色中STS DAT中的峰位置以及隧道间隙(δT),热力学间隙(δ)和库仑间隙(δC)之间的关系。(d)单个风味量子霍尔系统的精确对角线计算获得的状态密度。(e)(d)的linecuts在选定的填充物处显示光谱(F)使用Lorentzian拟合的电子激发峰提取的间隙,从而形成-2 <𝜈 <-1范围(蓝色)和-1 <𝜈 <0范围(红色)中的Haldane Sash特征。从精确的对角度模拟中提取的类似差距以灰色显示。(g)(a)的linecuts,在恒定填充处显示光谱特征,以与理论(d)进行比较。
随着连接到功率系统的双重喂养发电机(DFIG)的扩大量表,无法忽略系统继电器保护对系统中继电流的影响。设置和配置继电器保护将受到不精确的短路电流计算的影响。但是,一些现有的研究仅考虑输入是撬棍,而转子激发被阻塞的条件。中国的新网络标准需要DFIG的输出反应性支持电流,并将改变短路电流的特性。为了解决此问题,根据分析DFIG的瞬态等效势的特征,提供了具有不间断激发的DFIG的瞬态模型。基于频道链接的不间断变化的特征以及新的网格标准反应性支持电流的要求,提出了带有不间断激发的DFIG的短路电流计算方法。基于实时数字模拟器(RTD),这是一个建立了包含DFIG转换器实际控制单元的数字分析实验平台,验证了拟议的短路电流均方根(RMS)值计算方法。
先前的研究强调了激发/抑制(E/I)比率在典型和非典型发展,心理健康,认知和学习中的作用。其他研究强调了高频经颅随机噪声刺激(TRN)的好处,即神经刺激的一种兴奋形式。我们将E/I作为潜在机制进行了研究,并研究了TRN对学习的影响是否取决于E/I,由Aperiodic指数衡量为其假定标记。除了使用TRN操纵E/I外,我们还操纵了已经显示出影响E/I的学习水平(学习/过度学习)。参与者(n = 102)在数学学习任务中,在背外侧前额叶皮层(DLPFC)上接受了假刺激或20分钟的TRN。我们表明,正如Aperiodic指数所反映的TRN增加了E/I,并且较低的E/I预测TRN从TRN中专门用于学习任务。与以前的磁共振光谱(MRS)的E/I研究相反,我们发现学习水平对E/I没有影响。使用不同数据集的进一步分析表明,E/I(EEG与MRS)的两种度量至少可以反映出不同的生物学机制。我们的结果很高 - 将E/I作为神经刺激功效和学习的标志物的作用。这种机械理解为增强学习和个性化干预提供了更好的机会。
激光剥离 (LLO) 通常用于将功能薄膜与下面的基板分离,特别是将基于氮化镓 (GaN) 的发光二极管 (LED) 从蓝宝石中分离出来。通过将 LED 层堆栈转移到具有定制特性的外来载体(例如高反射表面),可以显著提高光电器件的性能。传统上,LLO 是使用纳秒级的紫外激光脉冲进行的。当指向晶圆的蓝宝石侧时,蓝宝石/GaN 界面处的第一层 GaN 层吸收脉冲会导致分离。在这项工作中,首次展示了一种基于 520 nm 波长的飞秒脉冲的 LLO 新方法。尽管依赖于亚带隙激发的双光子吸收,但与传统的 LLO 相比,超短脉冲宽度可以减少结构损伤。在详细研究激光影响与工艺参数的关系后,我们开发了两步工艺方案,以制造边长可达 1.2 毫米、厚度可达 5 微米的独立 InGaN/GaN LED 芯片。通过扫描电子显微镜和阴极发光对分离的芯片进行评估,结果显示 LLO 前后的发射特性相似。
追求高水平的掺杂而不会恶化结晶度是非常困难的,但对于释放材料的隐藏力至关重要。这项研究证明了通过激光至关重要的自由基,硼龙二氢化合物(BH 2)的激光振动激发(BH 2)在燃烧化学蒸气期间保持晶格完整性的有效途径。改进的钻石结晶度归因于硼氢化硼(BH)的相对丰度的激光,热抑制的热抑制,其过度存在会诱导硼隔离并扰乱结晶。BDD的硼浓度为4.3×10 21 cm -3,膜电阻率为28.1毫米·CM,孔迁移率为55.6 cm 2 v -1 s -1,超过了商业BDD。高导电和结晶的BDD在传感葡萄糖方面具有提高的效率,证实了激光激发在产生高性能BDD传感器方面的优势。在掺杂过程中重新获得激光激发的结晶度可以消除半导体行业的长期瓶颈。
摘要:钻石中氮呈(NV)中心的电荷状态是下一代量子传感,通信和计算的先决条件。在这里,我们使用声子辅助的反stokes激发来实现NV 0和NV-状态之间的可逆转换。在这种情况下,我们观察到具有寿命长达数十秒钟的NV-中心的两个衰减过程。通过研究NV-状态的光谱结构演化的动力学,我们发现NV-中心的光谱结构是通过反stokes激发的电荷状态过渡过程调节的。我们提出的主要原因是由NV-的电离产生的局部电场,它改变了颜色中心的辐射环境。我们的结果可能提供了一种控制氮 - 视牙中心的电荷状态的替代方法。关键字:钻石,电荷状态控制,声子辅助上转换,量子光学■简介
摘要 建筑外围护结构中的空气泄漏是建筑物供暖和制冷需求的很大一部分原因。因此,快速可靠地检测泄漏对于提高能源效率至关重要。本文介绍了一种从外部确定建筑外围护结构中空气泄漏的新方法,将锁定热成像和鼓风机门系统的热激发相结合。鼓风机在建筑物内产生周期性的过压,导致外表面(立面)泄漏附近的表面温度发生周期性变化。通过以已知频率激发的温度变化,以激发频率对热图像的时间序列进行傅里叶变换,可得到突出显示泄漏影响区域的幅度和相位图像。红外摄像机的周期性激发和检测称为锁定热成像,广泛用于表征半导体器件和无损检测。激发通常通过光、电或机械能量输入实现。在本研究中,在 75 Pa 压差下,以三个 40 秒的激励周期对外墙进行了测量,总测量时间仅为 2 分钟。在光照、风和云量变化很大的条件下,空气温差为 5 至 7 K 时进行了测量。与最先进的差分红外热成像测量相比,测量结果显示检测质量更高,受环境条件变化的影响更小。该方法仅在激励频率下突出显示振幅图像的变化,从而过滤掉由环境影响引起的变化。因此,低至几开尔文的温差就足够了,可以从外部检查大型外墙。该振幅图像已经比用差分热成像创建的图像更清晰。使用标量积对振幅进行相位加权,可以进一步减少图像中不需要的伪影。关键词 锁定、热成像、鼓风机门、气密性、泄漏检测、建筑围护结构、建筑节能 1 引言 不受控制的气流通过建筑围护结构,造成 30-50% 的建筑物供暖能耗 (Kalamees,2007 年;Jokisalo 等人,2009 年;Jones 等人,2015 年)。因此,气密性评估,特别是快速可靠地定位泄漏,对于减少供暖能源需求至关重要。风扇加压法或鼓风机门测试在多项国际标准 (Deutsches Institut für Normung e. V.,2018 年;ASTM,2019 年) 中有规定,用于测量建筑物的整体气密性。然而,泄漏定位很麻烦,需要
摘要 建筑外围护结构中的空气泄漏是建筑物供暖和制冷需求的很大一部分原因。因此,快速可靠地检测泄漏对于提高能源效率至关重要。本文介绍了一种从外部确定建筑外围护结构中空气泄漏的新方法,将锁定热成像和鼓风机门系统的热激发相结合。鼓风机在建筑物内产生周期性的过压,导致外表面(立面)泄漏附近的表面温度发生周期性变化。通过以已知频率激发的温度变化,以激发频率对热图像的时间序列进行傅里叶变换,可得到突出显示泄漏影响区域的幅度和相位图像。红外摄像机的周期性激发和检测称为锁定热成像,广泛用于表征半导体器件和无损检测。激发通常通过光、电或机械能量输入实现。在本研究中,在 75 Pa 压差下,以三个 40 秒的激励周期对外墙进行了测量,总测量时间仅为 2 分钟。在光照、风和云量变化很大的条件下,空气温差为 5 至 7 K 时进行了测量。与最先进的差分红外热成像测量相比,测量结果显示检测质量更高,受环境条件变化的影响更小。该方法仅在激励频率下突出显示振幅图像的变化,从而过滤掉由环境影响引起的变化。因此,低至几开尔文的温差就足够了,可以从外部检查大型外墙。该振幅图像已经比用差分热成像创建的图像更清晰。使用标量积对振幅进行相位加权,可以进一步减少图像中不需要的伪影。关键词 锁定、热成像、鼓风机门、气密性、泄漏检测、建筑围护结构、建筑节能 1 引言 不受控制的气流通过建筑围护结构,造成 30-50% 的建筑物供暖能耗 (Kalamees,2007 年;Jokisalo 等人,2009 年;Jones 等人,2015 年)。因此,气密性评估,特别是快速可靠地定位泄漏,对于减少供暖能源需求至关重要。风扇加压法或鼓风机门测试在多项国际标准 (Deutsches Institut für Normung e. V.,2018 年;ASTM,2019 年) 中有规定,用于测量建筑物的整体气密性。然而,泄漏定位很麻烦,需要