视网膜疾病会严重危害人们的视力,直接影响生活质量。视网膜是人眼的重要组成部分,由视觉细胞组成。它负责处理视觉信息。黄斑是中央视觉所必需的,位于视网膜层内。视网膜损伤,特别是黄斑区域的损伤,会导致视力严重丧失 [ 1 ]。因此,及早发现视网膜异常对于及时治疗和减少视力丧失至关重要 [ 2 ]。最常见的视网膜疾病包括糖尿病性黄斑水肿 (DME) 和年龄相关性黄斑变性 (AMD)。AMD 有两种类型:湿性 AMD(脉络膜新生血管,或 CNV)和干性 AMD(视网膜黄斑硬化症),后者是 65 岁以上人群失明的主要原因 [ 3 ]。约 25% 的糖尿病患者患有糖尿病性黄斑水肿 (DME),这是由于糖尿病导致视网膜积液所致。如果不及时治疗,这些疾病可能会永久损害视力。因此,开发自动诊断系统对于有效的治疗计划至关重要,因为此类系统可以减轻临床医生的负担并提高早期检测率 [ 4 ]。
具有中心颞尖峰(选择)的自限性癫痫是儿童癫痫中最常见的局灶性综合征(1)。大多数选择的儿童都有良好的预后,但是少数比例可能会演变成癫痫性脑病,而睡眠中的尖峰和波动激活(EE-SWAS)。与EE-SWA相关的EEG模式被称为睡眠中的癫痫持续状态(ESE)(2)。慢波睡眠的几乎恒定的癫痫样活动通常伴随着认知或行为功能的显着回归。所有认知领域都可能受到影响,包括语言和交流,暂时空间方向,注意力和社会互动。然而,现有治疗方法的有效减少ESE患者的功能障碍的能力仍然非常有限。重复的经颅磁刺激(RTMS)作为一种局灶性,无创技术,在癫痫病领域具有治疗潜力(3)。低频RTM(≤1Hz)抑制皮质兴奋性,增加皮质无声时期的持续时间并减少运动诱发的潜在幅度(4)。使用低频RTM抑制癫痫发作的基本原理与有望中断突触潜力和局灶性皮质兴奋性的事实有关。现实世界的证据表明,使用Fure-8-coil的低频RTM可能是儿科患者药物耐药性癫痫的有效治疗,导致癫痫发作频率降低30%(5)。Ren等。 发现RTM是一种在选择患者中高度普遍的行为问题的新方法(6)。Ren等。发现RTM是一种在选择患者中高度普遍的行为问题的新方法(6)。尽管Cochrane审查发现RTMS在减少癫痫样排放方面是安全和有效的,但仍缺乏RTMS效率的证据,但仍缺乏癫痫发作的效率(7)。在选择中兴奋性和抑制性能(E-I不平衡)之间的不平衡已被确定为癫痫发作和认知障碍(8)。抑制网络涉及感觉运动和皮层网络,这表现为相应函数的解离。然而,RTMS对选择患者的E-I不平衡的影响尚不清楚。我们假设RTMS会降低选择中的癫痫发作频率和E-I不平衡。要解决我们的假设,需要满足两个要求:(1)RTMS后是否减少了癫痫发作频率和癫痫样放电以及(2)RTMS是否可以改善E-I不平衡。
用于估计嘈杂的中间量子量子(NISQ)ERA设备上的分子基态性能,基于变异的量子本特征(VQE)算法的算法已获得流行,因为它们相对较低的电路深度和对噪声的弹性。9,10这导致了一系列成功的演示,涉及当今量子设备和模拟器上小分子的分子基态能量的计算。4,6,11 - 22然而,仅对分子基态能量的估计不足以描述许多有趣的化学过程,这些化学过程涉及某种形式的电子激发。23,例如,化学现象的准确建模,例如光化学反应,涉及过渡金属复合物,光合作用,太阳能电池操作等的催化过程等。需要对分子地面和激发态进行精确模拟。这种系统的电子激发态通常密切相关,因此需要使用复杂的量子化学理论来准确描述。在过去的几十年中,在这方面已经开发了许多方法。24 - 32最初由Stanton和Bartlett开发的运动方程耦合群集(EOM-CC)26方法是一个流行的示例,通常用于计算分子激发剂,例如激发能量
用于估计嘈杂的中间量子量子(NISQ)ERA设备上的分子基态性能,基于变异的量子本特征(VQE)算法的算法已获得流行,因为它们相对较低的电路深度和对噪声的弹性。9,10这导致了一系列成功的演示,涉及当今量子设备和模拟器上小分子的分子基态能量的计算。4,6,11 - 22然而,仅对分子基态能量的估计不足以描述许多有趣的化学过程,这些化学过程涉及某种形式的电子激发。23,例如,化学现象的准确建模,例如光化学反应,涉及过渡金属复合物,光合作用,太阳能电池操作等的催化过程等。需要对分子地面和激发态进行精确模拟。这种系统的电子激发态通常密切相关,因此需要使用复杂的量子化学理论来准确描述。在过去的几十年中,在这方面已经开发了许多方法。24 - 32最初由Stanton和Bartlett开发的运动方程耦合群集(EOM-CC)26方法是一个流行的示例,通常用于计算分子激发剂,例如激发能量
根据国际能源署 (IEA) 和欧洲环境署 (EEA) 的数据,能源消耗量逐年增加。这刺激了人们对新能源的探索和现有能源效率的提高。据预测,到 2030 年,光伏设备将产生太瓦级能源,同时千瓦时成本也将降低 [1]。太阳能是最经济实惠的能源之一。硅基太阳能电池主要用于太阳能利用。大部分能源将由硅太阳能电池板产生。除了硅之外,还有各种多层复合材料,如 GaAs、CdTe、Cu(In,Ga)Se 2 和最近提出的钙钛矿结构 [2, 3]。后者价格昂贵,难以在工业规模上生产。此外,由于有毒成分,过期后处理也存在问题,使用此类复合材料违背了绿色化学的原则。硅的优势在于化学可用性、技术链的成熟度、电子元件(包括含有稀土元素的元件)的处理。同时,硅基太阳能电池的一个严重缺点是光电转换效率 (LECE) 相对较低,即最佳样品的转换效率不高于 25% [4,5]。硅的最高光敏性区域位于约 1 µ m,其 LECE 光谱与太阳发射光谱的对应性较差。通过将太阳辐射从紫外线和蓝色光谱范围向下转换为 1 µ m 光谱范围来提高硅太阳能电池板的效率是一项紧迫的任务,对于太空应用而言,这非常现实 [6– 9]。潜在的发射体是三价镱离子,因为它的近红外 (NIR) 发光带约为 1000 nm( 2 F 5 / 2 – 2 F 7 / 2 跃迁)[9–13],与硅电池的 LECE 光谱顶部高度重合。Ba 4 Y 3 F 17 [14–17] 是经过深入研究的新型发光基质之一,因为它表现出下转换发光的高量子产率 [14]。对于在这些光谱区域吸收的各种敏化阳离子,能量可以从紫外和蓝色光谱区域转移到镱。一种特别有效的能量转移机制是通过敏化剂离子的逐步弛豫,通过量子切割机制激发两个受体离子 [12, 13, 18, 19]。量子切割表现出高达 195% 的高量子效率系数,但 NIR 发光的量子产率较低。更有效的途径是在具有更高发光量子产率的系统中简单地降档。一种有前途的组合物是 Yb/Eu 掺杂对,因为铕的吸收光谱包含 UV 和蓝色光谱区域的几条线。镱发光的最高直接测量量子产率(2.对于 SrF 2 :Yb (1.0 mol %):Eu (0.05 mol %) 粉末,在 266 nm 泵浦下达到 5 % [20]。本文旨在合成 Ba 4 Y 3 F 17 :Yb:Eu 固溶体并研究其发光性能。该样品旨在用于增强硅太阳能电池的 LECE。
在时间范围内不断向后回滚的地方(通常称为“退缩的地平线控制”)。即使MPC控制器按定义依赖于系统模型,模型参数中的某些不确定性或预测外部干扰时的不确定性可以通过状态反馈循环来补偿,该状态反馈循环在随后的最佳最佳控制问题中适应实际系统响应。在优化工业过程(Bordons&Camacho,1998)和交通流量(Ferrara等,2015)中,可以找到许多MPC应用,其中控制器用于应对时间变化的参数和不断发展的边界条件。MPC对于风电场的协调至关重要(Vali等,2019),这会在风向上永久变化。基于MPC的控制器也证实了它们在自动驾驶中的效率,在该自动驾驶中,车辆面临动态障碍(Babu等,2018)。在结构控制中,大多数MPC控制器都依赖于预测外部激发力演化的专门设计的动态模型。Oveisi等。 (2018)开发了一种递归的最小二乘算法来估算干扰信号,该算法不断更新并用于确定退化的地平线控制。 该方法已成功验证了受谐波干扰的压电层压梁的验证。 Wasilewski等人。 (2019年),从自回归模型中回收了地震激发,并将其前进到MPC Conloller,这稳定了使用液压执行器的多局建筑物的振动。 (2007)。Oveisi等。(2018)开发了一种递归的最小二乘算法来估算干扰信号,该算法不断更新并用于确定退化的地平线控制。该方法已成功验证了受谐波干扰的压电层压梁的验证。Wasilewski等人。(2019年),从自回归模型中回收了地震激发,并将其前进到MPC Conloller,这稳定了使用液压执行器的多局建筑物的振动。(2007)。在Zelleke和Matsagar(2019)中,开发了一种基于能量的预测控制算法,以抑制受风激发的多局建筑物的振动。Yuen等人提出了一种基于概率的鲁棒性控制方法来减轻暴露于不确定激发的细长建筑物的振动的替代方法。在Takacs和Rohal'-Ilkiv(2014)中测试了五种最佳和次优MPC方法,以确定它们的构成复杂性和在线启动的能力,以减轻配备Piezoce-Ramic Control设备的自由,稳态和短暂振动。作者观察到最佳和次优策略之间的控制绩效没有显着多样性。他们建议在计算上有效的次优方法(例如,最低时间显式或牛顿– Raphson的MPC)可以用于较大维度的系统而不会大大损失性能的系统。
为了估计嘈杂的中尺度量子 (NISQ) 时代设备上的分子基态特性,基于变分量子特征求解器 (VQE) 的算法因其相对较低的电路深度和对噪声的抵抗力而广受欢迎。9,10 这导致了一系列成功的演示,涉及在当今的量子设备和模拟器上计算小分子的分子基态能量。4,6,11 – 22 然而,仅仅估计分子基态能量不足以描述许多涉及某种形式的电子激发的有趣化学过程。23 例如,准确模拟化学现象,如光化学反应、涉及过渡金属配合物的催化过程、光合作用、太阳能电池操作等,需要准确模拟分子基态和激发态。此类系统的电子激发态通常具有很强的相关性,因此需要使用复杂的量子化学理论来准确描述它们。在过去的几十年里,在这方面已经开发了许多方法。 24 – 32 运动方程耦合团簇 (EOM-CC) 26 方法最初由 Stanton 和 Bartlett 开发,是一种常用的例子,通常用于计算分子激发态特性,例如激发能
空间结构光场应用于半导体量子点会产生与均匀光束根本不同的吸收光谱。在本文中,我们使用圆柱多极展开式对不同光束的光谱进行了详细的理论讨论。对于量子点的描述,我们采用了基于包络函数近似的模型,包括库仑相互作用和价带混合。单个空间结构光束和状态混合的结合使得量子点中的所有激子态都变为光可寻址。此外,我们证明可以定制光束,以便选择性地激发单个状态,而无需光谱分离。利用这种选择性,我们提出了一种测量量子点本征态激子波函数的方法。该测量超越了电子密度测量,揭示了激子波函数的空间相位信息。这种相位信息的提取是从偏振敏感测量中已知的;然而,这里除了二维偏振自由度之外,还可以通过光束轮廓获得无限大的空间自由度。
肌肉痉挛在慢性脊髓损伤(SCI)中很常见,对康复和日常活动提出了挑战。痉挛的药理学管理主要是靶向抑制兴奋性输入的抑制,这是一种阻碍运动后期的方法。为了确定更好的靶标,我们研究了对运动神经元的抑制性和兴奋性突触输入的变化,以及慢性SCI中的动感神经元兴奋性。我们在成年小鼠的性小鼠中诱导了完全或不完全的SCI,并将损伤不完全的人分为低功能恢复组。然后提取sacrocaudal脊髓,并用于研究损伤以下的可塑性,并以幼稚动物的组织为对照。背根的电刺激引起了慢性严重SCI的痉挛性痉挛激活,但不能在对照中进行。为了评估通过感觉刺激激活的总体突触抑制作用,我们测量了脊柱根部恢复的速率依赖性抑郁症。我们发现在慢性损伤模型中抑制性输入受到损害。当药理学上阻断突触抑制时,所有制剂都变得明显痉挛,甚至是对照。但是,慢性损伤的制剂会产生比对照更长的痉挛。然后,我们在感官诱发的痉挛过程中测量了运动神经元的兴奋性突触后术(EPSC)。数据显示EPSC的振幅或动物群中的电导率没有差异。尽管如此,我们发现在慢性SCI中,由EPSC激活的运动神经元持续增强。这些发现表明,运动神经元兴奋性和突触抑制的变化而不是激发会导致痉挛,并且更适合更有效的治疗干预措施。
摘要 - 已经回顾了抗铁磁纳米结构中木元的激发,检测和传播的理论和实验研究。抗铁磁材料的特性,例如不存在宏观磁化,存在强交换相互作用以及复杂的磁晶体结构,使实施新型的内存和功能电子设备使得有可能。微观和纳米级的抗铁磁材料中可能的镁效应的研究需要新的实验和理论方法。在这篇综述中,描述并系统化了磁振荡激发的最新结果 - 磁磁性的抗铁磁材料。提出了抗铁磁铁和多层抗磁性异质结构的主要理论结果。模型用于描述包括纳米层结构中电流和光脉冲引起的现象,包括抗铁磁体。通过布里鲁因散射研究抗铁磁微体和纳米结构的方法,以及抗铁磁性纺纱型和镁质的应用的前景。
