弯曲振动自由度的研究得益于其二维特性和两个明确的物理极限——线性和弯曲配置——以及中间配置——准线性物种,其特点是大振幅运动,使其具有丰富的光谱特征[1]。正或非单调的非谐性,后者与非刚性分子的 Birge-Sponer 图中 Dixon 凹陷的出现有关[2],以及由于跨越线性壁垒附近的状态波函数中线性和弯曲特征的混合而导致的异常旋转光谱[3,4],是准线性物种光谱中最显著的光谱特征。光谱方法的重大进步和发展使得人们能够通过实验获得多种分子物种的高弯曲泛音。通过这种方式,我们有可能获得实验光谱信息,从而研究能量接近线性势垒的系统 [5,6]。水 [7] 和 NCNCS [8–10] 的研究结果具有特别重要的意义。近年来,量子单值化概念最初由 Cushman 和 Duistermaat [11] 提出,后由 Child [12] 重新研究,对系统中的状态分配有很大帮助。由于状态与线性势垒的接近性,波函数的复杂性妨碍了正确的状态标记 [5–8,13]。这是从经典力学中借用的概念,它依赖于拓扑奇点,当系统能量大到足以探测局部鞍点或最大值时,就会发生拓扑奇点,从而阻止定义全局作用角变量 [14]。非刚性分子弯曲振动的理论建模需要特殊的工具,因为大振幅振动自由度会强烈耦合振动和转动自由度。Hougen-Bunker-Johns 弯曲哈密顿量 [15] 是该领域的一项开创性工作。这项工作后来扩展到半刚性弯曲哈密顿量 [16] 和一般半刚性弯曲哈密顿量 [17]。基于上述发展而产生的 MORBID 模型 [18] 目前是分析非刚性分子光谱的标准方法,其中需要同时考虑转动和振动自由度,以便建模实验项值并分配量子标签。代数方法,尤其是振动子模型,是分子光谱建模的传统积分微分方法的替代方法。该模型基于对称性考虑,并严重依赖于李代数的性质[ 19 ]。振子模型 (VM) 属于一类模型,该类模型将 U(n+1) 代数指定为 n 维问题的动力学或谱生成代数 [20]。类似的模型已成功应用于强子结构 [21,22] 和原子核 [23–25] 的建模。在 Iachello 引入的原始振子模型形式中,双原子分子种类的回旋振动激发被视为集体玻色子激发 [26],由于相关自由度的矢量性质,动力学代数为 U(3+1)=U(4) [25,27]。弯曲振动的二维性质以及简化振子模型形式以有效处理多原子系统的需要,自然而然地导致了二维极限振子模型(2DVM)的制定[28,29]。2DVM 定义的形式能够模拟弯曲自由度的线性和弯曲极限情况,以及表征中间情况的大振幅模式[30-33]。本研究中使用的代数哈密顿量的四体算符的扩展已于最近发表[34]。2DVM 还用于耦合弯曲器[28,35-37]、拉伸弯曲相互作用[38-41]和异构化反应中的过渡态[42]的建模。
Abelian-Higgs模型[1]是一种相对论场理论,其在(2Þ1)维度中的激发采用拓扑稳定的孤子的形式,称为涡旋。该场理论由一个复杂的标量场φ组成,该场φ耦合到u - 1Þ量规场Aμ。静态理论等同于有效的金茨堡 - 兰道理论[2],它描述了一个通过涡旋数量量化的超导体的磁场。涡流解决方案的动力学是这两种理论不同的地方。 Abelian-Higgs模型具有Lorentz不变性[3-5]的二阶动力学[3-5],而依赖时间的Ginzburg-Landau模型则表现出一级动力学[6,7]。这是我们将在本文中重点关注的前二阶动力。请注意,在(3þ1)中的尺寸涡流显示为像弦类似的物体,所产生的宇宙字符串,如果存在,则可以通过对早期宇宙宇宙学的重力贡献来检测到它们[8]。涡流散射已经对单个参数λ的所有值进行了很好的研究[3 - 5,9,10]。此参数将模型分为两种类型; I型I(λ<1)其中涡流表现出长距离吸引力,而II型(λ> 1),其中涡旋在远距离排列。相比之下,在临界耦合(λ¼1)处,
由于其两维的性质以及存在两个良好的物理极限 - 线性和弯曲的配置,以及中间性构造 - 质中性物种 - 质膜(Quasilinear)物种 - 由大峰值运动使其富有谱图,因此,的研究已被促进了自由度的研究。 Positive or non-monotonous anaharmonicities, the latter associated with the occurrence of the Dixon dip in the Birge-Sponer plot for nonrigid molecules [2], and anomalous ro- tational spectra due to the mixing of linear and bent characters in the wave functions of states straddling in the propinquity of the barrier to linearity [3, 4] are the most salient spectroscopic features可以在准线性物种的光谱中找到。 光谱法的显着进步和发展使得一些分子物种的高弯曲泛音的实验访问可能。 以这种方式,有可能访问实验光谱信息,从而可以在线性屏障周围研究系统[5,6]。 水[7]和NCNC [8-10]获得的结果特别相关。 最近,Cushman和Duistermaat [11]最初引入的量子单片概念并由Child [12]重新审视,这在波浪函数复杂性的系统中的分配大大帮助了状态,这是由于国家邻近的障碍与线性的障碍,妨碍了状态性的状态,妨碍了一个状态标记[5-8,13]。 这一领域的开创性作品是Hougen-Bunker-Johns Bender Hamiltonian [15]。的研究已被促进了自由度的研究。Positive or non-monotonous anaharmonicities, the latter associated with the occurrence of the Dixon dip in the Birge-Sponer plot for nonrigid molecules [2], and anomalous ro- tational spectra due to the mixing of linear and bent characters in the wave functions of states straddling in the propinquity of the barrier to linearity [3, 4] are the most salient spectroscopic features可以在准线性物种的光谱中找到。光谱法的显着进步和发展使得一些分子物种的高弯曲泛音的实验访问可能。以这种方式,有可能访问实验光谱信息,从而可以在线性屏障周围研究系统[5,6]。水[7]和NCNC [8-10]获得的结果特别相关。最近,Cushman和Duistermaat [11]最初引入的量子单片概念并由Child [12]重新审视,这在波浪函数复杂性的系统中的分配大大帮助了状态,这是由于国家邻近的障碍与线性的障碍,妨碍了状态性的状态,妨碍了一个状态标记[5-8,13]。这一领域的开创性作品是Hougen-Bunker-Johns Bender Hamiltonian [15]。这是一个从经典力学借来的概念,一旦系统能量足够大以探测局部鞍点或最大值,以防止定义全球动作角变量的定义[14]。非矛盾分子物种中弯曲振动的理论建模需要特殊工具,因为较大的振幅振动自由度强烈地伴随着自由度和旋转的自由度。这项工作后来扩展到了半irigid bender hamiltonian [16]和一般的semirigid bender hamiltonian [17]。基于上述开发的模型[18]目前是分析非矛盾分子光谱的标准方法,其中同时考虑了旋转和振动自由度的同时考虑实验术语值的建模和量子标签的分配所需。代数方法,尤其是Vibron模型是传统的分子模型的传统内部差异方法的替代方法。该模型基于对称考虑因素,并在很大程度上依赖于Lie代数的特性[19]。Vibron模型(VM)属于一个模型家族,该模型分配了U(n + 1)代数为n维问题的动力学或频谱生成代数[20]。类似的模型已成功地应用于哈德子[21,22]和核[23-25]的结构的建模。2DVM定义了一种形式主义,该形式主义能够建模弯曲程度的线性和弯曲限制案例,以及表征中间情况的大幅度模式[30-33]。在原始的Vibron模型形式主义中,由Iachello引入,双子型分子物种的反振动激发被视为集体骨气兴奋[26],并且动态代数为u(3+1)= u(4),由于自由度的相关程度[25,25,27]。弯曲振动的二维性质以及简化Vibron模型形式主义以有效地处理多原子系统的需求,自然而然地驱动着vibron模型(2DVM)的二维极限的制定[28,29]。最近发表了在本工作中使用的代数哈密顿量的四体操作员的扩展[34]。2DVM也已用于耦合弯曲器的建模[28,35-37],拉伸弯曲中的相互作用[38-41]和异构反应中的过渡态[42]。
分子的电子激发态对于许多物理和化学过程都是核心,但是它们通常比接地状态更难计算。在本文中,我们利用量子计算机的优势开发一种算法,用于高度准确地计算激发态。我们将合同的schr¨odinger方程(CSE)求解 - schr odinger方程的收缩(投影)到两个电子的空间上 - 溶液对应于schr odinger方程的地面和激发态。最近用于求解CSE的量子算法(称为合同的量子本素层(CQE))集中在基态上,但我们基于旨在快速优化地面或激发态的方差开发了CQE。我们应用算法来计算H 2,H 4和BH的地面和激发态。
在Terahertz(THZ)频率范围内产生单色电磁辐射,数十年来一直是一项艰巨的任务。在此,证明了介电材料KY(MOO 4)2中光音子单色子THZ辐射的发射。ky的分层晶体结构(MOO 4)2导致红外剪切晶格振动的能量低于3.7 MeV,对应于低于900 GHz的频率,而基于固体的单色辐射源很少见。直接通过5 ps长宽带Thz脉冲激发,ky中的红外活性光学振动(MOO 4)2重新发射窄带子Thz辐射作为数十无picseconds的时变偶极子,对于振荡器而言,频率低于1 THz,这对于振荡器而言异常长。如此长的连贯发射允许检测超过50个辐射的辐射,频率为568和860 GHz。与使用材料的化学稳定性相同的较长衰减时间表明,THZ技术中的各种可能应用。
处理发票是业务运营的基本和关键组成部分。但这很繁琐。每个供应商都有自己的怪癖,每张发票都有自己的命名法——一家公司的“付款期限 15 天”是另一家公司的“两周内到期付款”。即使发票每个月都来自同一个供应商,采购代理也会发生变化,格式也会有所不同,而且会出现拼写错误。当然,发票只是文档冰山一角。每天,在每个公司,在管理和运营的每个级别,员工都需要从合同、租约、税务表格、调查和其他文件中提取详细信息。好消息?人工智能 (AI) 提供了更有效地执行这些复杂、集成任务的方法。这些解决方案无缝且可扩展,操作简单,易于管理。使用各种创新的人工智能技术,组织可以更快地处理文档并简化操作程序;错误越少,更正和撤回就越少。最近
一些研究小组曾尝试将钍原子核单独固定在电磁阱中,以研究它们。然而,托尔斯滕·舒姆和他的团队选择了一种完全不同的技术。“我们开发出了一种包含大量钍原子的晶体,”在维也纳开发了这些晶体并与 PTB 团队一起测量它们的 Fabian Schaden 解释说。“虽然这在技术上相当复杂,但它的优势在于,我们不仅可以用这种方式研究单个钍原子核,还可以用激光同时击中大约 10 的 17 次方个钍原子核——比我们银河系中的恒星数量多一百万倍。”大量的钍原子核放大了这种效应,缩短了所需的测量时间,并增加了实际发现能量跃迁的概率。
具体而言,结合 DFT 计算,环辛四烯的光电子和光分离光谱发现了平面异构体和船形异构体之间相互转化的证据。9 此外,在单分子和双分子环加成的合成研究中,已经观察到同一组反应物同时产生多种产物异构体。10,11 为了解释这两种情况下的产物异构体分布,引入了由动力学而不是热力学驱动的分叉过渡态。采用密度泛函理论和分子动力学计算相结合的方法,对上述反应性进行了更定量的解释。12 由实验得出的能量提供的完全活性空间自洽场 (CASSCF) 计算已将驻点定位在势能
我们正在开发一种基于 Yb + 离子集合的光子存储器系统。Lamb-Dicke 模式中的强离子约束,以及 F=0 和 F=1 的使用,m F =0 磁场不敏感的超精细状态可保证较长的存储时间。我们系统中的单个离子可寻址性使离子之间的库仑相互作用可用于单个存储激发之间的受控操作。