在拓扑孤子范围内,涡流已经出现了显着且通用的解决方案。他们在物理学的各个领域中发现了应用,例如超导性[1]或超导性[2]中的凝结物或粒子物理模型中的应用[3,4]。Abelian-Higgs模型是支持相对论测量涡旋的典型模型(请参阅[5,6]和其中的参考文献)。该模型描述了在过去几十年中彻底研究了量规对称性的阶段,在量规对称性被自发折断的阶段中,uð1的量规场与带电标量场之间的最小耦合,从而更深入地研究了与这类与此类别的拓扑独奏相关联的现象。研究揭示了涡流的基本方面[3,7,8],它们在散射过程中的行为[9-11]或集体坐标的应用以降低
神经元是在大脑中发送信息的细胞。神经元有三种主要类型:感觉神经元,运动神经元和中间神经元。这三个角色都有不同的角色,并在与身体其他部位进行交流中起着重要作用。您的大脑大约有1000亿个神经元(即100,000,000,000!),与银河系中的星星的恒星数大致相同。
1。Alberts,b。约翰逊(Johnson)刘易斯(J。);拉夫(M。)罗伯茨,K。 Walter,P。DNA的结构和功能。 在细胞的分子生物学中,第四版。 ;加兰科学:纽约,2002年。 2。 Hazel,P。; Huppert,J。; Balasubramanian,S。; Neidle,S。循环长度依赖性g-四链体的折叠。 J. am。 化学。 Soc。 2004,126,16405-16415。 3。 Bansal,A。; Prasad,M。;罗伊(Roy) Kukreti,S。人类甘露糖受体基因编码区的短含GC的短壁画显示出构象开关。 生物聚合物2012,97,950-962。 4。 sket,p。; Korbar,T。; Plavec,J。 D(TGGGGT)内极性位点反转的3'-3'反转对四重奏间阳离子结合的影响。 J. Mol。 结构。 2014,1075,49-52。 5。 Gupta,R。C。; Golub,E。I。; Wold,M。S。; Radding,C。M.由RECA家族的重组蛋白促进的DNA链交换的极性。 proc。 natl。 Acad.Sci。 U.S.A. 1998,95,9843-9848。 6。DeLaat,W。L。; Appeldoorn,E。; Sugasawa,K。; n。 Jaspers,N。G. J.; Hoeijmakers,J。H. J. J.人类复制蛋白A的DNA结合极性在核苷酸切除修复中核酸酶位置。 基因开发。 1998,12,2598-2609。 7。 Balasingham,S。V。; Zegeye,E。D。; H. Homberset; Rossi,M。L。; Laerdahl,J.K。; Bohr,V。A。; Tonjum,T。结核分枝杆菌DNA解旋酶XPB的酶活性和DNA底物特异性。 PLOS ONE 2012,7。 8。 nucl。Alberts,b。约翰逊(Johnson)刘易斯(J。);拉夫(M。)罗伯茨,K。 Walter,P。DNA的结构和功能。在细胞的分子生物学中,第四版。;加兰科学:纽约,2002年。2。Hazel,P。; Huppert,J。; Balasubramanian,S。; Neidle,S。循环长度依赖性g-四链体的折叠。J.am。化学。Soc。2004,126,16405-16415。 3。 Bansal,A。; Prasad,M。;罗伊(Roy) Kukreti,S。人类甘露糖受体基因编码区的短含GC的短壁画显示出构象开关。 生物聚合物2012,97,950-962。 4。 sket,p。; Korbar,T。; Plavec,J。 D(TGGGGT)内极性位点反转的3'-3'反转对四重奏间阳离子结合的影响。 J. Mol。 结构。 2014,1075,49-52。 5。 Gupta,R。C。; Golub,E。I。; Wold,M。S。; Radding,C。M.由RECA家族的重组蛋白促进的DNA链交换的极性。 proc。 natl。 Acad.Sci。 U.S.A. 1998,95,9843-9848。 6。DeLaat,W。L。; Appeldoorn,E。; Sugasawa,K。; n。 Jaspers,N。G. J.; Hoeijmakers,J。H. J. J.人类复制蛋白A的DNA结合极性在核苷酸切除修复中核酸酶位置。 基因开发。 1998,12,2598-2609。 7。 Balasingham,S。V。; Zegeye,E。D。; H. Homberset; Rossi,M。L。; Laerdahl,J.K。; Bohr,V。A。; Tonjum,T。结核分枝杆菌DNA解旋酶XPB的酶活性和DNA底物特异性。 PLOS ONE 2012,7。 8。 nucl。2004,126,16405-16415。3。Bansal,A。; Prasad,M。;罗伊(Roy) Kukreti,S。人类甘露糖受体基因编码区的短含GC的短壁画显示出构象开关。生物聚合物2012,97,950-962。4。sket,p。; Korbar,T。; Plavec,J。D(TGGGGT)内极性位点反转的3'-3'反转对四重奏间阳离子结合的影响。J. Mol。 结构。 2014,1075,49-52。 5。 Gupta,R。C。; Golub,E。I。; Wold,M。S。; Radding,C。M.由RECA家族的重组蛋白促进的DNA链交换的极性。 proc。 natl。 Acad.Sci。 U.S.A. 1998,95,9843-9848。 6。DeLaat,W。L。; Appeldoorn,E。; Sugasawa,K。; n。 Jaspers,N。G. J.; Hoeijmakers,J。H. J. J.人类复制蛋白A的DNA结合极性在核苷酸切除修复中核酸酶位置。 基因开发。 1998,12,2598-2609。 7。 Balasingham,S。V。; Zegeye,E。D。; H. Homberset; Rossi,M。L。; Laerdahl,J.K。; Bohr,V。A。; Tonjum,T。结核分枝杆菌DNA解旋酶XPB的酶活性和DNA底物特异性。 PLOS ONE 2012,7。 8。 nucl。J. Mol。结构。2014,1075,49-52。5。Gupta,R。C。; Golub,E。I。; Wold,M。S。; Radding,C。M.由RECA家族的重组蛋白促进的DNA链交换的极性。 proc。 natl。 Acad.Sci。 U.S.A. 1998,95,9843-9848。 6。DeLaat,W。L。; Appeldoorn,E。; Sugasawa,K。; n。 Jaspers,N。G. J.; Hoeijmakers,J。H. J. J.人类复制蛋白A的DNA结合极性在核苷酸切除修复中核酸酶位置。 基因开发。 1998,12,2598-2609。 7。 Balasingham,S。V。; Zegeye,E。D。; H. Homberset; Rossi,M。L。; Laerdahl,J.K。; Bohr,V。A。; Tonjum,T。结核分枝杆菌DNA解旋酶XPB的酶活性和DNA底物特异性。 PLOS ONE 2012,7。 8。 nucl。Gupta,R。C。; Golub,E。I。; Wold,M。S。; Radding,C。M.由RECA家族的重组蛋白促进的DNA链交换的极性。proc。natl。Acad.Sci。 U.S.A. 1998,95,9843-9848。 6。DeLaat,W。L。; Appeldoorn,E。; Sugasawa,K。; n。 Jaspers,N。G. J.; Hoeijmakers,J。H. J. J.人类复制蛋白A的DNA结合极性在核苷酸切除修复中核酸酶位置。 基因开发。 1998,12,2598-2609。 7。 Balasingham,S。V。; Zegeye,E。D。; H. Homberset; Rossi,M。L。; Laerdahl,J.K。; Bohr,V。A。; Tonjum,T。结核分枝杆菌DNA解旋酶XPB的酶活性和DNA底物特异性。 PLOS ONE 2012,7。 8。 nucl。Acad.Sci。U.S.A. 1998,95,9843-9848。 6。DeLaat,W。L。; Appeldoorn,E。; Sugasawa,K。; n。 Jaspers,N。G. J.; Hoeijmakers,J。H. J. J.人类复制蛋白A的DNA结合极性在核苷酸切除修复中核酸酶位置。 基因开发。 1998,12,2598-2609。 7。 Balasingham,S。V。; Zegeye,E。D。; H. Homberset; Rossi,M。L。; Laerdahl,J.K。; Bohr,V。A。; Tonjum,T。结核分枝杆菌DNA解旋酶XPB的酶活性和DNA底物特异性。 PLOS ONE 2012,7。 8。 nucl。U.S.A. 1998,95,9843-9848。6。DeLaat,W。L。; Appeldoorn,E。; Sugasawa,K。; n。 Jaspers,N。G. J.; Hoeijmakers,J。H. J. J.人类复制蛋白A的DNA结合极性在核苷酸切除修复中核酸酶位置。 基因开发。 1998,12,2598-2609。 7。 Balasingham,S。V。; Zegeye,E。D。; H. Homberset; Rossi,M。L。; Laerdahl,J.K。; Bohr,V。A。; Tonjum,T。结核分枝杆菌DNA解旋酶XPB的酶活性和DNA底物特异性。 PLOS ONE 2012,7。 8。 nucl。6。DeLaat,W。L。; Appeldoorn,E。; Sugasawa,K。; n。 Jaspers,N。G. J.; Hoeijmakers,J。H. J. J.人类复制蛋白A的DNA结合极性在核苷酸切除修复中核酸酶位置。基因开发。1998,12,2598-2609。 7。 Balasingham,S。V。; Zegeye,E。D。; H. Homberset; Rossi,M。L。; Laerdahl,J.K。; Bohr,V。A。; Tonjum,T。结核分枝杆菌DNA解旋酶XPB的酶活性和DNA底物特异性。 PLOS ONE 2012,7。 8。 nucl。1998,12,2598-2609。7。Balasingham,S。V。; Zegeye,E。D。; H. Homberset; Rossi,M。L。; Laerdahl,J.K。; Bohr,V。A。; Tonjum,T。结核分枝杆菌DNA解旋酶XPB的酶活性和DNA底物特异性。 PLOS ONE 2012,7。 8。 nucl。Balasingham,S。V。; Zegeye,E。D。; H. Homberset; Rossi,M。L。; Laerdahl,J.K。; Bohr,V。A。; Tonjum,T。结核分枝杆菌DNA解旋酶XPB的酶活性和DNA底物特异性。PLOS ONE 2012,7。8。nucl。lin,Y。H。; Chu,C.C。; Fan,H。F。; Wang,P。Y。; Cox,M。M。; Li,H。W.在没有ATP水解的情况下,5到3链交换极性是RECA核蛋白丝的内在性。ac。res。2019,47,5126-5140。9。saito,i。;高山Sugiyama,H。; Nakatani,K。通过电子传递通过电子传递进行了光诱导的DNA裂解 - 表明位于5'鸟嘌呤的鸟嘌呤残基是最含电子的位点。J.am。化学。Soc。1995,117,6406-6407。
这项研究的目的是研究EESM在电动汽车中的潜在应用。为了实现这一目标,本研究涵盖了一些主题。研究这些主题是为了面对挑战,然后EESM可能普遍存在,并最大程度地将EESM的优势用于电动汽车应用程序。在控制策略中,挑战是正确调整定子和场电流的组合,以便可以实现高功率因数和最小铜损耗。为了解决此问题,提出了控制策略,以便将反应性功耗和总铜损失最小化。使用拟议的策略,沿扭矩速度的信封最大化输出功率,并实现了高效率。在动态电流控制中,由于场绕组和定子绕组之间的磁耦合,一个绕组的电流上升会诱导另一个绕组力(EMF)。这引入了动态电流控制中的干扰。在这项研究中,提出了当前的控制算法来取消诱导的EMF,并减轻了干扰。在机器设计中,有望在相同的EESM设计中实现高启动扭矩和有效的场弱。要意识到这一点,需要满足一些标准。这些标准被得出并集成到设计过程中,包括多目标优化。A 48 V EESM是原型的。在实验验证中,达到10 N·M/L的扭矩密度,包括冷却夹克。基于估计,建立了闭环场电流控制。在现场激发中,采用了非接触式激发技术,从而导致野外绕组的难以接近。要实现封闭环中场电流的精确控制,提出了一种场电流的估计方法。在实验验证中,在2%的误差中跟踪了场电流参考。由于用于现场激发的其他转换器,EESM驱动器的成本增加了。提出了一种提取开关谐波以进行场激发的技术。使用此技术,定子和野外绕组都只能使用一个逆变器供电。
摘要 纺锤波是非快速眼动 (NREM) 睡眠期间的标志性振荡。它们与慢振荡 (SO) 一起被认为在巩固学习信息方面发挥着机械作用。纺锤波的数量和空间分布与睡眠前学习期间的大脑活动以及睡眠后的记忆表现有关。如果纺锤波被吸引到通过睡前学习任务激发的皮质区域,这就引出了一个问题:纺锤波的空间分布是否灵活,以及它们的区域表达是否也可以通过实验性大脑刺激来操纵。我们使用兴奋性经颅直流电刺激 (tDCS) 在重复测量实验设计中刺激左右运动皮质。刺激后,我们在睡眠期间记录了高密度脑电图 (EEG),以测试局部刺激如何调节睡眠纺锤波的区域表达。事实上,我们表明,睡眠前局部皮质部位的兴奋性 tDCS 会使纺锤波的表达偏向随后睡眠期间的兴奋位置。局部 tDCS 刺激对 SO 没有影响。这些结果表明睡眠纺锤波的空间拓扑结构既不是硬连线的也不是随机的,纺锤波可以灵活地指向外源刺激的皮质回路。关键词 1) 振荡,2) 睡眠纺锤波,3) 刺激
EnergyAustralia 今天宣布,其为新南威尔士州利斯戈的派珀山发电站供水的莱尔湖大坝可能成为新的抽水蓄能设施的所在地。能源执行官利兹·韦斯科特表示,初步估计表明,莱尔湖抽水蓄能设施将能够生产 350 兆瓦的电力,储能时间约为 8 小时,足以在高峰需求期间为超过 150,000 户家庭供电。“初步研究表明,莱尔湖抽水蓄能设施有巨大潜力成为新南威尔士州转型能源系统中的一个重要基础设施,”韦斯科特女士说。“抽水蓄能将继续在未来为家庭和企业提供可靠、实惠和更清洁的电力方面发挥重要作用。莱尔湖的优势之一是它已经位于主要输电线路附近,”她说。 “这是一项低排放技术,可以储存大量电力以便快速释放,有助于在可再生能源不可用时提供保障,并填补燃煤电厂退役后留下的巨大空白。几秒钟内即可运行的能力将确保灯一直亮着,并降低客户的能源成本。”莱尔湖将被用作下水库,上水库将位于沃克山的南侧,所有土地均归 EnergyAustralia 所有。派珀山负责人 Greg McIntyre 表示,该设施将为该地区带来可喜的经济增长,并支持利斯戈成为未来的可再生能源中心。“莱尔湖的新抽水蓄能设施将确保利斯戈在能源生产方面的遗产在未来得到很好的保存,”麦金太尔先生说。“如果该项目继续进行,我们预计在建设期间将创造数百个工作岗位,还需要一些职位来监督该设施的持续运营,”他说。 “在做出任何坚定决定之前,将进行详细评估,包括环境影响和规划审批;然而,第一步是与我们的社区协商。” EnergyAustralia 的目标是到 2050 年实现碳中和。最近的公告包括支持昆士兰州 250 兆瓦的 Kidston 抽水蓄能设施、承诺在维多利亚州建设 350 兆瓦的电池,以及新南威尔士州 300+ 兆瓦的 Tallawarra B 发电站,这将是澳大利亚首个净零排放氢气和天然气发电厂。
变量,例如刺激辐射的特征(流感,波长,脉冲持续时间等)以及组成材料(NP的大小和形状)都可以在E-GAS加热和能量释放途径中起关键作用。[23–32]此外,材料探针的温度依赖性(例如电子特异性热,[33-35]界面热诱导性,[36]等)都会影响实际的放松动态。当前对等离子纳米系统中超快松弛过程的理解取决于超快的时间分辨光学的光学,并且在较小程度上是电子光谱镜[28,37-40] [28,37-40],因为这主要产生了有关时间依赖的电子 - 依赖性电子 - 离子或离子静电温度的间接信息。[41,42]另一方面,理论模型正在变得越来越精致,但无法处理,到目前为止,实际系统的复杂性。[3,15,22,43,44]
摘要:我们提出了一种量子-经典混合变分算法,即量子轨道最小化方法(qOMM),用于获得厄米算子的基态和低激发态。给定表示本征态的参数化拟设电路,qOMM 实现量子电路来表示轨道最小化方法中的目标函数,并采用经典优化器根据拟设电路中的参数最小化目标函数。目标函数具有隐式嵌入的正交性约束,这使得 qOMM 可以对每个输入参考态应用不同的拟设电路。我们进行了数值模拟,试图使用 UCCSD 拟设电路在 STO-3G 基中寻找 H 2 、LiH 和由四个氢原子排列成方格的玩具模型的激发态。将数值结果与现有的激发态方法进行比较,qOMM 不太容易陷入局部最小值,并且可以通过更浅的假设电路实现收敛。
通过时间分辨的吸收和荧光光谱研究,研究了荧光日二烯(FDAE)衍生物的荧光二乙烯(FDAE)衍生物的激发态动力学的抽象近红外两光子吸收和激发态动力学。用量子化学计算进行预筛选预测,封闭环异构体中用甲基噻酯基(MT-FDAE)的衍生物具有两光子的吸收横截面 - 大于1000 GM,这是通过Z-SCAN的测量和激发功率依赖于瞬时吸收的实验证实的。比较在一光子和同时的两光子激发条件下瞬时吸收光谱的比较表明,在CA的时间表上,在三个途径上停用了较高激发态的MT-FDAE的闭合环异构体。200 fs:(i)比单光过程,(ii)内部转换到s 1状态的环反应反应的效率更高,(iii)放松到与s 1状态不同的较低状态(s 1'状态)。时间分辨的荧光测量结果表明,该S 1'状态被放松到S 1状态,具有较大的排放概率。在本工作中获得的这些发现有助于以两光子的方式扩展FDAE到生物学窗口的开关切换能力,并应用于超分辨率荧光成像。
激子的基本特性取决于库仑结合的电子和孔的自旋,山谷,能量和空间波形。在范德华材料中,这些属性可以通过层堆叠配置进行广泛设计,以创建具有静态平面外电偶极子的高度可调的层间激子,以牺牲振动性内置偶极偶极子的强度,负责轻度降低光线的振动。在这里我们表明,双层和三层2H-Mose 2晶体中的层间激子与地面(1 s)和激发态(2 s)的电端驱动耦合(2 s)。我们证明,这些独特的激子物种的杂种状态可提供强大的振荡力强度,大型永久性偶极子(高达0.73±0.01 ENM),高能量可调性(高达〜200 meV)以及对旋转和山谷特征的完全控制,因此激子G型可以在较大的范围内操纵ICKITON G-ICTOR。此外,我们观察到双层和三层激发态(2 s)互层激元及其与内部激子态(1 s和2 s)的耦合。我们的结果与具有自旋(层)选择性和超越标准密度功能理论计算的耦合振荡器模型非常吻合,促进了多层2H-MOSE 2作为一个高度可调的平台,可探索与强光相互作用相互作用的Exciton-Exciton相互作用。