摘要:人类面临着减少环境影响的挑战。因此,全球许多专家一直在研究生产过程和能源的有效利用。以这种方式,开发更清洁,更有效的能源系统对于可持续发展至关重要。目前的工作分析了在墨西哥特定位置运行的太阳能驱动电动冷却系统的技术可行性。理论系统整合了有机兰金和单阶段吸收冷却周期。抛物线槽收集器和存储系统集成了太阳系。使用NREL的SAM软件为典型的气象年度建模。有机周期分析的工作流体包括苯,环己烷,甲苯和R123,而吸收系统的工作流体是氨水混合物。周期的第一和第二定律表演是在各种操作条件下确定的。参数(例如能量利用因子,涡轮机功率,COP和EXERGY效率)的参数已在各种操作条件下报道。发现,当兽人利用苯在ORC上用作工作流体时,最高的能量利用因子分别为80℃和20°C的ACS浓缩温度,并在0°C的冷却温度下为0°C。最佳的exergy效率为0.524,但在相同的冷却温度下为0.524。
摘要 摘要 2020 Elsevier Ltd 世界人口不断增加,随之而来的化石燃料消耗也随之增加,因此有必要寻找新的能源;清洁、廉价和可再生的资源。氢气在各种方法中都被称为清洁和可再生燃料;因此,寻找清洁的氢气生产方式可以被视为应对气候变化和全球变暖的适当解决方案。在本研究中,提出了太阳能驱动的高温蒸汽电解器系统的概念设计,并使用实时模拟器内部代码对其性能进行了热力学研究。在两个不同的地点评估了入口参数对系统性能的影响,并在设计日计算了系统的实时性能。结果表明,所提出的系统能够分离进水中 98% 的现有氢气,并以 1.2 g/s 的速率生产纯氢,总能量和火用效率分别为 21.5% 和 22.5%。此外,据报道,主要的火用破坏器是太阳能集热器,其入口火用的能量损失为 36.4%。根据结果,推断出对热吸收最有效的参数是直接法向辐照度和入射角,而相对湿度没有主要影响。此外,设计的系统在设计日分别在斯特林和巴博尔·诺希尔瓦尼理工大学生产了 52.43 千克和 26.45 千克氢气。这些地点的年平均氢气产量分别估计为 4.98 吨和 3.93 吨。
摘要 . 存储系统是帮助可再生能源增加其在能源网中的渗透率并使其成为可持续选择的重要技术。太阳能集热器需要热存储设备来储存短期或长期的热量。本文研究了两种最常见的与传统平板太阳能集热器耦合的热存储系统。更具体地说,本文研究了带有水箱的显热存储和带有相变材料 (PCM) 的潜热存储箱。针对不同的工作温度水平进行了能量和火用研究。使用这两种存储技术每天对系统进行监控。结果表明,在所有研究场景中,使用 PCM 在能量上更有效。另一方面,由于储存水的温度升高,使用显热存储可提高火用性能,尤其是在早上储水箱初始温度水平较低的场景中。值得注意的是,潜热存储的每日能源效率范围为 21.9% 至 69.1%,显热存储的每日能源效率范围为 14.2% 至 55.3%。此外,潜热储存的能量效率范围为 1.23% 至 5.64%,显热储存的能量效率范围为 3.99% 至 7.53%。此外,必须指出的是,相变材料的最佳温度为 75ºC,而储水箱中的最佳初始温度为 40ºC。这些结果表明,PCM 是高温应用的有益选择,例如带有吸收或吸附机的太阳能冷却系统。
摘要:这项研究评估了一个地区合并热量需求的影响,目的是通过能源,自我,经济,经济经济和环境指标来提高热量生产单位,以及对投资和燃料成本的敏感性。The following production systems to satisfy the heat demands (domestic hot water production and space heating) of a mixed district composed of office (80%), residential (15%), and commercial (5%) buildings are considered: gas- and biomass-fired boilers, electric boilers and heat pumps (grid-powered or photovoltaic -powered), and solar thermal collectors.进行比较,检查了三种系统尺寸方法:在建筑规模,行业规模(住宅,办公室和商业)或地区规模上。对于所研究的配方,高降低的效果高达5%(能量和驱逐),所有系统的升级成本较低(20%至54%),高达55%的exergy销毁成本高达55%,并且高达5%的CO 2降低。总而言之,提高和需求汇总倾向于改善特定的效率,降低特定成本,通过峰值功率大小方法减少总投资,并减轻太阳能驱动系统中的时间不匹配。可能的缺点是由于分布网络而导致的额外热量损失,并且由于所需的温度较高而导致热泵的性能降低。尽管如此,在大多数情况下,优势胜过缺点。
摘要 面对日益严峻的能源与环境问题,LNG及可再生能源逐渐走入公众视野,成为解决这些问题的关键。然而,若不能妥善利用LNG中蕴含的大量冷能及调控可再生能源波动性的储能技术,将会造成能源损失。本研究通过结合LNG冷能梯级利用与液态空气储能技术,提出了一种基于LNG-LAES的梯级储能系统。根据终端用户不同时段用电需求的不同,将系统分为三种运行模式,并分别从传热、能量、火用等方面进行分析。分析结果表明,本研究设计的LNG-LAES梯级储能系统在能量效率、火用效率及实用经济性方面均具有一定的优势。
本研究介绍并分析了海洋热能转化(OTEC)技术的三种植物构型。所有解决方案均基于使用OTEC系统通过电解机获得氢。然后压缩并储存氢。在第一个和第二个布局中,分别利用了氨和水和乙醇的混合物的Rankine循环;在第三个布局中,考虑了卡利娜周期。在每种配置中,OTEC循环与聚合物电解质膜(PEM)电解液和压缩和存储系统耦合。太阳能收集器将进入电解酶的水预热至80℃。进行了能量,自我和经济研究,以评估产生,压缩和储存氢的成本。根据冷凝器的温度范围,热和冷资源流量的质量流量比以及质量分数,检查了主要设计约束的参数分析。计算得出的总体发射效率的最大值等于卡利纳循环的93.5%,而0.524€ /kWh是实现氢生产的最低成本。将结果与其他氢生产系统的典型数据进行了比较。
•经济有效地将冷和热能存储在颗粒中(35 $/吨,从<-100°C到> 1000°C)。•直接气体/颗粒接触避免传热表面,并最大程度地减少热损失和热交换器成本。•避免冷液体存储成本和低温遏制和火灾危害问题。
摘要:冷热电联产(CCHP)系统的综合利用技术是可再生和可持续能源研究的前沿。本文提出了一种基于混合三联产压缩空气储能系统(HT-CAES)的新型CCHP系统,该系统可满足多种形式的能源需求。对HT-CAES进行了全面的热力学模型,并进行了能量和火用方法的热力学性能分析。此外,对影响HT-CAES性能的关键参数进行了敏感性分析和热电联产能力评估。结果表明,往返效率、电能存储效率和火用效率分别可达73%、53.6%和50.6%。因此,本文提出的系统具有较高的效率和灵活性,可以联合供应多种能源来满足需求,在太阳能资源丰富的地区具有广阔的应用前景。
•为未来内燃机开发新技术。•将废物转化为可生物降解生物质的能量。•热力学系统的火用和能源效率。•生物压缩天然气生产的新技术和低成本产品。•通过可再生能源生产清洁水。•电动汽车电池的新材料。