海洋热能转化(OTEC)系统使用温暖的海面水和深冷水之间的温度差来产生电力。由于表面温水与深海冷水之间的温度差异,与化石燃料驱动的发电厂相比,这些系统的热效率很低。在本研究中,提出了一种提高OTEC循环的输出功率,热效率和热量存储的方法,使用了现有的热发电厂的温水出口代替地表水,而地表水通常在基本的OTEC周期中使用。结果表明,考虑到基本OTEC周期中的平均电净功率,能量和充电效率分别为3.34%和17.2%。然后,使用两个阶段的涡轮机研究了建议的OTEC循环,并在能量和充电方面加热。比较两种配置的结果表明,在拟议的周期中,平均输出功率每月增加552 kWh,能量和发射效率分别提高了0.048%和0.31%。作为现有的热循环性能,对实际合并循环发电厂(CCPP)进行了案例研究,以拟议的周期进行建模。结果表明,与基本周期相比,使用CCPP冷凝器的出口水分别提高了17.72 MWH,而能量和易发效率分别提高了1.432%和8.02%。另外,使用冷凝器出口温水,每天平均生产1829吨淡水,并且CCPP的热效率提高了1.87%。
在这项研究中,开发了地热闪光发电厂中热力学状态计算的模型。为了验证该模型,Hellisheiði发电厂被建模,包括其高压和低压的电力生产和用于地区供暖的热交换器站。然后将模型的数据与工厂的测量数据进行比较。该模型是在Python中使用CoolProp进行热能计算的。使用SchemDraw以视觉显示模型的结果以生成植物的流程图。产生了能量,自我和经济学分析,在Sankey和Grassman di-Agrams中进行了能量和充电分析,而ExergoSonomic分析仅针对主要组成部分进行。井的输入是从TFT测量中获得的。植物本身的测量来自SCADA系统,但工厂的设计变量基于设计文件。模型与测量数据的比较主要在误差范围内。错误主要是由于基于不频繁的TFT测量值的良好输入值引起的。基于能量分析,将植物效率计算为32%,其驱动效率计算为46%。
本文旨在确定构造原理在(能源)生产系统热经济学领域的结果。该原理最近被表述为最大熵生产原理的扩展,并在文献中用于解释所有类型的流动系统的形状和结构。首先,热经济环境的概念与环境资源的消耗和残余排放一致,这本身就是每种生产系统的特征。这种方法可以推断出任何能源系统的演变都与热经济环境中资源的开发密切相关。此外,广泛接受的假设是必须通过最小化产品的特定资源(能量)成本来优化能源系统,这必须被视为物理原理的结果,该物理原理告诉我们哪些能源系统可以持续存在(生存),哪些其他系统将被选择灭绝。本文展示了如何通过创建循环来降低产品的单位能量成本,使由生产过程及其供应链组成的宏观系统更加可持续地运行,符合构造原理。最后,热经济环境的定义(至少在原则上)允许正确识别直接在环境中处理残留物和副产品的资源(能量)成本,而无需任何额外操作。因此,残留物和副产品通常必须通过不同的(新)生产过程转化为某种产品,支持循环经济的范式,并强调循环不仅对系统效率而且对系统生存都很重要。更一般地说,所获得的结果可以看作是自然和人工(能源)生产系统中可以观察到的越来越复杂和高度循环的进化趋势的物理依据。
摘要:当涉及到中小型范围的海水脱盐时,由太阳能提供动力的有机兰氨酸周期(ORC)是当前可用的最能量 - 能量的技术。已经开发了各种太阳能技术来捕获和吸收太阳能。其中,抛物线槽收集器(PTC)已成为一个低成本的太阳能热收集器,其运营寿命很长。本研究分别研究了使用Dowtherm A和甲苯作为太阳周期和兽人周期的工作流体的PTC驱动ORC的热力学性能和经济参数。热经济多目标优化和决策技术用于评估系统的性能。分析了四个关键参数,以至于它们对充电效率和总小时成本的影响。使用TOPSIS决策,可以识别出Pareto Frontier的最佳解决方案,其兽人充电效率为30.39%,每小时总成本为39.38 US $/h。系统参数包括137.7 m 3/h的淡水质量,总输出净功率为577.9 kJ/kg,区域加热供应量为1074 kJ/kg。成本分析表明,太阳能收集器约占每小时总成本的68%,为26.77 us $/h,其次是涡轮机,热电发生器和反渗透(RO)单元。
任务 3.4 收获的西红柿的地热干燥 [负责人 - EGE,合作伙伴 - IZTECH]:已在 Balçova 地热设施现场安装的地热柜式干燥机将用于干燥实验。将使用数据记录器测量温度、相对湿度和空气速度。为了确定西红柿重量的变化,将在干燥过程中使用数字称重装置(± 0.01 克)。在托盘入口、出口和环境中测量的温度、相对湿度和速度数据将用于能量和能量分析。将评估可销售产量。
摘要:本世纪人类的必要性之一是饮用水。如果可再生能源提供饮用水,则此供应将具有更多的环境利益。在本文中,提出了组合冷却和电力系统(Goswami循环)的组合,以及由地热能资源提供动力的反渗透和次氯酸钠植物。该系统的产物是电和冷却能,饮用水,氢和盐。进行了所有系统方面,能源,充电,经济,埃克斯环环境和环境分析。在环境分析中,考虑了空气污染的社会成本。这意味着对于不可再生能源发电系统产生的相同数量的系统电力,考虑到空气污染的社会成本,产生的空气污染气及其成本被量化。在这方面,定义了四个方案。结果表明,这种多代系统可产生1.751 GJ/年电能,1.04 GJ/年冷却能量,18106.8 m 3/年饮用水,7.396吨/年的氢气和3.838吨/年/年盐。系统的能量和自我效率等于12.25%,19.6%。该系统的投资回收期等于2。7年。
Room - Civil Seminar Room 2:15 – 2:25 SAI_001 ENERGY, EXERGY, AND ENVIRONMENTAL (3E) ANALYSIS OF CLEAN REFRIGERANT BASED HEAT PUMP FOR HOTEL APPLICATION IN INDIA 2:25 – 2:35 SAI_006 COMPARATIVE ANALYSIS OF R600A, R125, AND R22 REFRIGERANTS USING MATLAB: PERFORMANCE INSIGHTS FOR FUTURE APPLICATIONS 2:35 – 2:45 SAI_008 TRANSIENT MODEL使用Dymola 2:45 - 2:55 SAI_009全电动飞机的挑战2:55 - 3:05 SAI_010 SAI_010微型储存相位量化3:05 - 3:05 sai_0111111111111111111111111111EPD DRODY 3:15 - 3:011用非牛顿润滑剂润滑的粗糙孔流体动力板滑块3:15 - 3:25 SAI_029 SAI_029生命周期评估蒸汽甲烷改革和煤气气化方法
这项研究研究了跨临界二氧化碳(CO 2)循环与常规地热双闪光循环的整合,以提高各种入口温度(225°C,250°C,275°C)的能量和充电效率。尽管地热双重闪光周期和CO 2跨临界周期都因其高效率和可持续性而被认可,但在不同的热条件下解决其合并性能的全面比较分析仍然很少。为了弥合这一研究差距,开发了一个详细的计算模型,以评估在各种操作场景下基础和集成系统的热力学行为。结果表明,集成系统在能源效率方面产生显着提高,基本周期为0.112、0.1265和0.1383,相比0.08436、0.1038和0.1197。exergy分析揭示了在较高温度下的潜在热效率挑战,因此需要进一步优化。该研究还探讨了分离器压力变化对系统性能的影响,这表明精确的压力管理可以大大增强功率输出。调查结果倡导更广泛地采用综合地热系统,强调了它们的潜力,以实质上提高可再生能源生产的效率,并提出了用于系统优化和环境影响评估的未来研究的途径。
摘要 :本文介绍并分析了一种新型无化石燃料跨临界储能系统,该系统以二氧化碳为工作流体,在一个闭环中穿梭于两个不同深度的盐水层或洞穴之间,一个是低压储层,另一个是高压储层。采用热能存储和热泵,无需使用外部天然气来加热进入能量回收涡轮机的二氧化碳。我们仔细分析了能量存储和回收过程,以揭示系统的实际效率。我们还基于稳态数学方法,重点介绍了这种无化石燃料跨临界储能系统性能的热力学和敏感性分析。研究发现,无化石燃料跨临界二氧化碳储能系统具有良好的综合热力学性能。其火用效率、往返效率和能量存储效率分别为 67.89%、66% 和 58.41%,每单位存储体积产生的能量为 2.12 kW ⋅ h/m 3 ,火用破坏的主要贡献者是汽轮机再热器,由此我们可以量化性能的提升方式。此外,由于能量存储和回收压力相对较高,低压油藏压力较低,该新型系统表现出良好的性能。