虽然由于日益严格的尾气排放标准,过去几十年道路交通产生的颗粒物总量有所减少,但新出现的证据表明,轮胎、刹车和路面的磨损以及道路尘埃的悬浮也会产生颗粒物。人们对这些“非尾气”来源产生的颗粒物的了解不如尾气排放产生的颗粒物那么深入,因此解决这些问题的政策选择也较少。重要的是,提高现有排放标准的严格程度并不能解决非尾气颗粒物排放问题。因此,预计未来几年几乎所有道路交通产生的颗粒物都将来自非尾气排放源。鉴于颗粒物对公众健康的重大负面影响,政策制定者必须考虑如何管理这些排放。
F-35B 是联合攻击战斗机的短距起飞和垂直着陆 (STOVL) 变体。这种独特飞机的“悬停”能力是通过推力矢量喷嘴和中央安装的升力风扇的组合实现的,前者引导主发动机排气向下以产生后垂直升力,后者提供平衡的前垂直升力。Moog 设计、认证并制造了这两种应用所需的复杂作动系统。具体来说,Moog 为三轴承旋转喷嘴提供作动系统,该喷嘴将主发动机的排气向下旋转 90 度。此外,Moog 还提供控制升力风扇可变面积喷嘴和进气导叶的作动系统,从而控制通过升力风扇的气流。这些执行系统使用电子控制液压和燃油液压伺服执行器,专为在极端温度和振动环境下运行而设计。
F-35B 是联合攻击战斗机的短距起飞和垂直着陆 (STOVL) 变体。这种独特飞机的“悬停”能力是通过推力矢量喷嘴和中央安装的升力风扇的组合实现的,前者引导主发动机排气向下以产生后垂直升力,后者提供平衡的前垂直升力。Moog 设计、认证并制造了这两种应用所需的复杂作动系统。具体来说,Moog 为三轴承旋转喷嘴提供作动系统,该喷嘴将主发动机的排气向下旋转 90 度。此外,Moog 还提供控制升力风扇可变面积喷嘴和进气导叶的作动系统,从而控制通过升力风扇的气流。这些执行系统使用电子控制液压和燃油液压伺服执行器,专为在极端温度和振动环境下运行而设计。
飞机的主要动力是燃气涡轮发动机。这些发动机有多种形式,其中四种被认为是目前使用的主要发动机。这些发动机是涡轮喷气发动机、加力涡轮喷气发动机、涡轮风扇发动机和涡轮螺旋桨发动机。燃气涡轮机是从燃烧气体流中提取能量的旋转发动机。它们有一个上游压缩机,与下游涡轮机相连,中间有一个燃烧室。在飞机发动机中,这三个核心部件通常被称为“燃气发生器”。当涡轮喷气发动机推动的飞机速度接近废气速度时,涡轮喷气发动机效率最高。在许多情况下,飞机的设计速度比典型的喷气排气速度慢得多,因此发动机涡轮也用于驱动其他部件。这样,涡轮螺旋桨发动机、涡轮风扇发动机和涡轮轴发动机就针对它们驱动的飞机的速度和类型进行了优化。4. 很少有主要的飞机发动机制造商在市场上占据主导地位
虽然由于日益严格的尾气排放标准,道路交通产生的颗粒物总量在过去几十年有所减少,但新出现的证据表明,轮胎、刹车和路面的磨损以及道路灰尘的再悬浮也会产生颗粒物。人们对这些“非尾气”来源产生的颗粒物的了解程度不如尾气排放产生的颗粒物,因此解决这些问题的政策选择也较少。重要的是,非尾气颗粒物排放不会通过提高现有排放标准的严格程度来解决。因此,预计未来几年几乎所有道路交通产生的颗粒物都将来自非尾气排放源。鉴于颗粒物对公众健康的重大负面影响,政策制定者有责任考虑如何管理这些排放。
F-35B 是联合攻击战斗机的短距起飞和垂直着陆 (STOVL) 变体。这种独特飞机的“悬停”能力是通过推力矢量喷嘴和中央安装的升力风扇的组合实现的,前者引导主发动机排气向下以产生后垂直升力,后者提供平衡的前垂直升力。Moog 设计、认证并制造了这两种应用所需的复杂作动系统。具体来说,Moog 为三轴承旋转喷嘴提供作动系统,该喷嘴将主发动机的排气向下旋转 90 度。此外,Moog 还提供控制升力风扇可变面积喷嘴和进气导叶的作动系统,从而控制通过升力风扇的气流。这些执行系统使用电子控制液压和燃油液压伺服执行器,专为在极端温度和振动环境下运行而设计。
泵的智能设计及其减小的排气法兰允许配置不同的泵组合,而无需额外的安装框架。由于泵仅通过适配器相互连接,因此投资成本和系统占地面积都大大减少。
泵的智能设计及其减小的排气法兰允许配置不同的泵组合,而无需额外的安装框架。由于泵仅通过适配器相互连接,因此投资成本和系统占地面积都大大减少。
泵的智能设计带有缩小的排气法兰,无需额外的安装框架即可配置不同的泵组合。由于泵之间仅通过适配器连接,因此投资成本和系统占地面积都显著减少。
