©2024 Seagate Technology LLC。保留所有权利。Seagate和Seagate技术是美国和/或其他国家的Seagate Technology LLC的注册商标。Exos是Seagate Technology LLC的商标或注册商标,也可以是其在美国和/或其他国家的关联公司之一。所有其他商标或注册商标都是其各自所有者的财产。指的是驱动容量时,一个千兆字节或GB等于十亿个字节和一个TByte或TB等于1万亿个字节。您的计算机的操作系统可能使用不同的测量标准并报告较低的容量。此外,一些列出的容量用于格式和其他功能,因此将无法用于数据存储。Seagate保留更改的权利,恕不另行通知,产品或规格。sc82.1-2406us
©2024 Seagate Technology LLC或其分支机构。保留所有权利。Seagate,Seagate Technology和Spiral徽标是美国和/或其他国家/地区的Seagate Technology LLC的注册商标。Corvault和Exos是Seagate Technology LLC的商标或注册商标,或其在美国和/或其他国家的附属公司之一。所有其他商标或注册商标都是其各自所有者的财产。指的是驱动容量时,一个千兆字节(GB)等于十亿个字节,一个TBYTE(TB)等于1万亿个字节,而一个PBINGETE(PB)等于千列型。您的计算机的操作系统可能使用不同的测量标准并报告较低的容量。此外,一些列出的容量用于格式和其他功能,因此将无法用于数据存储。实际数据速率可能会因操作环境和其他因素(例如选择的接口和驱动容量)而有所不同。Seagate硬件或软件的出口或重新出口受美国工商部,工业和安全局的监管(有关更多信息,请访问www.bis.doc.gov),可以控制其他国家 /地区的出口,进口和使用。此处包含的所有编码指令和计划声明仍然是版权的作品以及Seagate Technology LLC或其关联公司的机密专有和商业秘密信息。Seagate保留更改的权利,恕不另行通知,产品或规格。任何用途,推导,拆卸,反向工程,传播,繁殖或任何修改,准备衍生作品,复制,分发,分发,披露Seagate Technology LLC的受版权保护的材料,以任何方式以任何方式,中等或形式,无论是全部还是明确的,如果不是明确的,则是严格的授权。
pontocerebellar促发育不足序列序列分析和外显子级缺失/重复测试19个基因面板基因列表ampd2,cask,chmp1a*,exosc3,exosc3,ophn1,rars2,rars2,rars2,rars2,reln,reln,reln,sepsecs,sepsecs,sepsecs,sepsecs,sepsecs,tsen2,tsen2,tsen15,tsen1111a11a11a11a11a11a, TUBB2B,TUBB3,VLDLR,VPS53,VRK1 *只能检测到CHMP1A和TUBA1A基因临床特征Pontocerebellar低位症(PCH)的大删除/复制,这是一种罕见的疾病,是一种罕见的疾病,影响了ventral Pons and Cerebellum,两种结构,在两个结构中都在linea中发挥了相同的发育。PCH在大多数情况下都有胎儿发作,并且似乎是由于发育缺陷和小脑的进行性萎缩的结合而引起的。1-4由于子宫内发作和PON的参与,PCH可以与其他异常小脑发育障碍区分开,这些异常是由于产前感染,血管异常,退行性疾病,退化性疾病,或代谢异常而引起的。 PCH有三种主要类型。 1型PCH是一种婴儿致死型,会影响脊髓中的前角细胞,并引起脊柱肌肉萎缩,肌张力低下,染色和小头畸形。 2型PCH显示了脊柱运动神经元的保留,其特征是发育延迟,语言障碍,吞咽困难,进行性小头畸形和肌张力障碍或唱片。 在2型PCH中,还可以看到滋补性持续性癫痫发作,呼吸异常,低血压,共济失调和眼动异常。 4型PCH与2型PCH相似但更严重,受影响的儿童患有染色,严重的广泛性克隆和呼吸衰竭,导致新生儿时期死亡。1-4由于子宫内发作和PON的参与,PCH可以与其他异常小脑发育障碍区分开,这些异常是由于产前感染,血管异常,退行性疾病,退化性疾病,或代谢异常而引起的。PCH有三种主要类型。1型PCH是一种婴儿致死型,会影响脊髓中的前角细胞,并引起脊柱肌肉萎缩,肌张力低下,染色和小头畸形。2型PCH显示了脊柱运动神经元的保留,其特征是发育延迟,语言障碍,吞咽困难,进行性小头畸形和肌张力障碍或唱片。滋补性持续性癫痫发作,呼吸异常,低血压,共济失调和眼动异常。4型PCH与2型PCH相似但更严重,受影响的儿童患有染色,严重的广泛性克隆和呼吸衰竭,导致新生儿时期死亡。其他形式的PCH极为罕见,除了小脑发育不全外,还包括可变的临床体征。在PCH的鉴别诊断中,经常考虑小脑发育不全疾病。这些可能包括X连接的小脑发育不全疾病,而无需一致的POS参与,这也可以伴随着智力障碍(XLID),肌畸形,小头畸形和癫痫病。此外,常染色体显性微管蛋白相关的疾病存在多种脑畸形,包括小脑发育不全,是由异常的神经元迁移,分化和轴突指导引起的。5-7遗传学尚不清楚PCH的发生率。 这组疾病表现为常染色体主导,隐性或X连接的主要特征。 神经放射学表现,发病年龄和随附的临床体征通常足够不同,以允许PCH类型的临床分类并与分子诊断相关。 1-4 PCH尽管存在遗传异质性,但通常表现为真正的门德尔特征,但目前的文献表明,由于某些基因中的致病变异,可以看到临床异质性。 GenEDX的pontocerebellar发育不全面板包括对18个基因的测序和缺失/重复分析。 这些基因编码各种蛋白质,包括涉及微管组装的蛋白质(TUBB基因),转移RNA剪接蛋白复合物(TSEN基因)的成分以及负责所有线粒体蛋白(RARS2)翻译的转移RNA合成酶。 在Illumina平台上同时对富集的目标同时测序。5-7遗传学尚不清楚PCH的发生率。这组疾病表现为常染色体主导,隐性或X连接的主要特征。神经放射学表现,发病年龄和随附的临床体征通常足够不同,以允许PCH类型的临床分类并与分子诊断相关。1-4 PCH尽管存在遗传异质性,但通常表现为真正的门德尔特征,但目前的文献表明,由于某些基因中的致病变异,可以看到临床异质性。GenEDX的pontocerebellar发育不全面板包括对18个基因的测序和缺失/重复分析。这些基因编码各种蛋白质,包括涉及微管组装的蛋白质(TUBB基因),转移RNA剪接蛋白复合物(TSEN基因)的成分以及负责所有线粒体蛋白(RARS2)翻译的转移RNA合成酶。在Illumina平台上同时对富集的目标同时测序。使用来自提交样品的基因组DNA,该面板上基因的完整编码区域和剪接位点连接的测试方法富含GenEDX开发的专有靶向捕获系统,用于使用CNV调用(NGS-CNV)进行下一代测序。双向序列读取是基于NCBI refSEQ转录本的参考序列组装并对齐的,并且人类基因组构建了GRCH37/UCSC HG19。基因特异性过滤后,分析数据以识别涉及编码
外泌体(EXOS)是包含许多生物活性分子的细胞外囊泡(EV)的亚组。它们表现出一种必不可少的细胞通信方式,主要是在不同的细胞群体之间,用于维持组织稳态和对各种压力的适应性反应的协调。这些细胞间通信对于复杂的多细胞式膜状系统至关重要。在过去的十年中,他们作为有效组织到组织的传播者的潜在作用已受到心血管生理和病理学的越来越多的关注。越来越多的证据表明,可以通过源自心肌细胞或茎/祖细胞的外部来促进心脏的修复和再生。但是,基本机制尚不清楚。在涉及心血管疾病的不同临床前模型中,源自不同的茎/祖细胞群体的EV已被用作无细胞疗法,并显示出令人鼓舞的结果。在这篇综述中,我们总结了EXOS研究的最新发展,来自不同细胞对心血管系统的外EXOS的影响,其潜在的治疗作用以及新的诊断生物标志物以及可能的临床翻译结果。
越来越多的证据表明,外泌体(EXOS)携带的非编码小RNA(miRNA)在多囊卵巢综合征(PCOS)的发展和治疗中起重要作用。在这项研究中,我们证明了PCOS小鼠血清衍生的EXOS促进了颗粒细胞(GCS)螺旋病,并诱导体内PCOS样表型的发生。值得注意的是,EXO miRNA测序与体外增益和功能丧失测定法相结合,表明MiR-128-3p在小鼠的血清中不存在的MiR-128-3p与PCOS的血清中不存在,可调节脂质的过氧化和GC敏感性对肥大诱导的脂质敏感性。从机械上讲,miR-128-3p的直接靶标CSF1的过表达逆转了miR-128-3p的抗肿瘤效应。相反,在CSF1降低的GC中减少了铁凋亡诱导。此外,我们证明了miR-128-3p抑制通过CSF1激活p38/ JNK途径,从而导致NRF2介导的SLC7A11转录下调,从而触发GC铁的过载。此外,鞘内miR-128-3p agomir注射到小鼠卵巢中,改善了PCOS样特征,并恢复了letrozole诱导的小鼠的生育能力。这项研究揭示了基于循环外来的PCOS的病理机制,并提供了miR-128-3p和CSF1在卵巢GC中的作用的第一个证据。该发现预计将为PCOS治疗提供有希望的治疗靶标。
缩写:ards =急性呼吸窘迫综合征; CTE =慢性创伤性脑病; ERG = V-ETS红细胞增生病毒E26癌基因同源物; exos =外泌体; LRKK2 =富含亮氨酸的重复激酶2;
摘要 胰腺导管腺癌 (PDAC) 是最难治愈的恶性肿瘤之一,5 年相对生存率仅为 6%。其治疗效果不佳是由于化疗耐药和独特的病理生理,即丰富的炎性细胞因子和细胞外基质 (ECM) 异常增生。基于骨髓间充质干细胞 (BM-MSCs) 能够影响 PDAC 的肿瘤微环境和恶性生长的理论,我们利用来自 BM-MSCs 的外泌体 (Exos) 作为 PDAC 归巢载体,以超越病理 ECM 的限制并增加治疗药物在肿瘤部位的积累。为了克服 PDAC 的化疗耐药性,在纯化的 Exos 上负载紫杉醇 (PTX) 和吉西他滨代谢的中间产物吉西他滨单磷酸盐 (GEMP)。本研究在肿瘤球体和PDAC原位模型上,Exo 递送平台表现出了归巢和穿透能力的优势。同时,还发现其在体内和体外均具有良好的抗肿瘤效果,且全身毒性相对较小。我们构建的 Exo 平台加载了 GEMP 和 PTX,得益于天然的 PDAC 选择性,具有出色的穿透性、抗基质性和克服化学耐药性的综合功能(图 1)。值得期待的是,Exo 平台可能为 PDAC 的靶向治疗提供一种有前途的方法。
carloscodie@gmail.com 817-797-1079 EXOS - Nationwide Caroline Harris Internship Program Manager (for all locations) caroline.harris@teamexos.com 864-381-2070 Area Locations Children's Health - Andrews Institute -Sports Performance- Plano PepsiCo (Corporate Wellness Site) - Plano American Airlines (Corp Wellness Site - Ft. Worth Capmetro(Corp Wellness网站) - Austin Health Fitness Corp.位置学生必须在线申请实习www.healthfitness.com britni douglas britni.douglas@hfit.com@hfit.com区域区域supota obuta fitness blue Cross blue Cross blue Shield of Texas 972.766.55563办公室972.766.56662
摘要:膀胱癌(BC)是一种异质性疾病,吡咯烷-5-羧酸还原酶1(PYCR1)能够促进BC细胞的增殖和侵袭,加速BC进展。本研究将si-PYCR1加载到BC的骨髓间充质干细胞(BMSC)来源的外泌体(Exos)中。首先,评估BC组织/细胞中的PYCR1水平,并评估细胞增殖、侵袭和迁移。测定有氧糖酵解水平(葡萄糖摄取、乳酸生成、ATP生成和相关酶的表达)和EGFR/PI3K/AKT通路磷酸化水平。通过共免疫沉淀实验检查PYCR1-EGFR相互作用。用oe-PYCR1转染的RT4细胞用EGFR抑制剂CL-387785处理。将si‑PYCR1装载于Exos中并进行鉴定,随后评估其对有氧糖酵解和恶性细胞行为的影响。通过给小鼠注射Exo‑si‑PYCR1和Exo‑si‑PYCR1建立异种移植瘤裸鼠模型。PYCR1在BC细胞中上调,在T24细胞中表达最高,在RT4细胞中表达最低。PYCR1敲低后,T24细胞的恶性行为和有氧糖酵解降低,而在RT4细胞中PYCR1过表达则扭转了这些趋势。PYCR1与EGFR相互作用,CL‑387785抑制EGFR/PI3K/AKT通路并减弱PYCR1过表达对RT4细胞的影响,但对PYCR1表达没有影响。 Exo‑si‑PYCR1对有氧糖酵解和T24细胞恶性行为的抑制作用比si‑PYCR1更强。Exo‑si‑PYCR1阻断了异种移植肿瘤的生长,具有良好的生物相容性。简而言之,
病理疤痕(PS),包括肥厚疤痕(HTS)和乳突,是伤口愈合不良的常见并发症,对患者的生活质量显着影响。目前,PS有几种治疗选择,包括手术,药物治疗,放射治疗和生物疗法。但是,这些治疗方法仍然面临着主要的挑战,例如低效率,高副作用和高度复发风险。因此,尤其紧急寻找更安全,更有效的治疗方法。新材料通常具有较少的免疫排斥反应,良好的组织相容性,并且可以减少治疗过程中的次要损害。新技术还可以降低传统治疗的副作用和治疗后的复发率。此外,新材料和生物材料的衍生产品可以改善新技术对PS的治疗作用。因此,新技术和创新材料被认为是增强PS的更好选择。本综述集中于使用两种新兴技术,微针(MN)和光动力疗法(PDT),以及两种新型材料,即光敏剂和外泌体(EXOS),用于PS的治疗。